BIVIC Bioinformatics momld) Centr

Software

Generating quantitative models describing the sequence specificity
of biological processes with the stabilized matrix method
Bjoern Peters* and Alessandro Sette

Address: La Jolla Institute for Allergy and Immunology, 3030 Bunker Hill Street, Suite 326, San Diego, CA 92109, USA

Email: Bjoern Peters* - bjoern_peters@gmx.net; Alessandro Sette - alex@liai.org
* Corresponding author

Published: 31 May 2005 Received: 21 January 2005
BMC Bioinformatics 2005, 6:132  doi:10.1186/1471-2105-6-132 Accepted: 31 May 2005
This article is available from: http://www.biomedcentral.com/1471-2105/6/132

© 2005 Peters and Sette; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Many processes in molecular biology involve the recognition of short sequences of
nucleic-or amino acids, such as the binding of immunogenic peptides to major histocompatibility
complex (MHC) molecules. From experimental data, a model of the sequence specificity of these
processes can be constructed, such as a sequence motif, a scoring matrix or an artificial neural
network. The purpose of these models is two-fold. First, they can provide a summary of
experimental results, allowing for a deeper understanding of the mechanisms involved in sequence
recognition. Second, such models can be used to predict the experimental outcome for yet
untested sequences. In the past we reported the development of a method to generate such
models called the Stabilized Matrix Method (SMM). This method has been successfully applied to
predicting peptide binding to MHC molecules, peptide transport by the transporter associated with
antigen presentation (TAP) and proteasomal cleavage of protein sequences.

Results: Herein we report the implementation of the SMM algorithm as a publicly available
software package. Specific features determining the type of problems the method is most
appropriate for are discussed. Advantageous features of the package are: (1) the output generated
is easy to interpret, (2) input and output are both quantitative, (3) specific computational strategies
to handle experimental noise are built in, (4) the algorithm is designed to effectively handle
bounded experimental data, (5) experimental data from randomized peptide libraries and
conventional peptides can easily be combined, and (6) it is possible to incorporate pair interactions
between positions of a sequence.

Conclusion: Making the SMM method publicly available enables bioinformaticians and
experimental biologists to easily access it, to compare its performance to other prediction
methods, and to extend it to other applications.

Background to gain insights into the experimental process. In the bio-
Whenever experimental data is gathered to examine a  logical sciences, models are often implicitly built and ver-
process, researchers will try — implicitly or explicitly - to  bally formulated, such as "the proteasome preferably
define a model describing the process. The purpose of  cleaves after hydrophobic amino acids". Such a model is
building a model is to generalize the experimental data,  easy to understand and often reflects all the knowledge
allowing the prediction of new experimental outcomes, or  that can be gathered from a few, difficult experiments.
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However, with the advent of high-throughput experi-
ments to the biosciences, it has become feasible to gener-
ate more quantitative, mathematical models, based on
large volumes of data. For the purpose of building a
model, conducting experiments can be formally described
as collecting pairs of experimental parameters x and exper-
imental outcomes (measurements: y,.,). Building a
model is then equivalent to finding a function f(x) = yyeq
= Vineas- Herein, we call the model function f a prediction
tool, and the experimental observations used to generate
it its training set T = (X, Y;neas)-

Developing a prediction tool is a two step process. First, a
general prediction method capable of generating specific
tools has to be chosen, such as a certain type of neural net-
work, classification tree, hidden markov model or regres-
sion function. This choice is to some degree determined
by the experimental data available. However, only a few
prediction methods are clearly unsuited for a certain type
or amount of data, leaving several potentially appropriate
methods to choose from. In practice, the personal experi-
ence of a scientist often determines which prediction
method he applies, as learning to apply a new method is
often more costly than the benefits of a slightly better
model.

After a method is chosen, it is applied to the experimental
data to generate a specific prediction tool. Several differ-
ent terms are commonly used for this second step, such as
'supervised learning', 'fitting the model' or 'regression'.
Each method has its own formalism describing how this
is done, but essentially a method is capable of generating
a certain class of functions, of which one is chosen, that
minimizes the difference between measured and pre-
dicted experimental outcomes for the training set T.

Here we describe a computer program implementing the
SMM prediction method, which can be applied to model
the sequence specificity of quantifiable biological proc-
esses. In such experiments, the input parameter x corre-
sponds to a sequences of amino-or nucleic acids, and the
experimental outcome y, ., is a real numbers measuring
the process efficiency. The method utilizes training sets in
which the examined sequences all have the same length.

The SMM method was previously applied successfully to
predictions of MHC binding [1], TAP transport [2] and
proteasomal cleavage [3]. However, its software imple-
mentation was not made publicly available, because it
relied on a commercial library with restrictive licensing
terms. Also, applying the method to a new problem
required manual changes in the source code, which is
impracticable for an external user. Both of these issues are
addressed in the software implementation made available
here. In addition, this manuscript describes two specific
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features that we have found to be effective in generating
high quality models and which can easily be utilized in
other prediction methods, namely handling of bounded
data and combinatorial peptide libraries.

The SMM software is not meant for 'classical' sequence
analysis, which can be roughly defined as aligning related
sequences in order to identify conserved residues or in
order to generate classifiers which can identify additional
related sequences. Rather, the typical application is the
characterization of a sequence recognition event, such as
the sequence specific cleavage efficiency of a protease.
This characterization does not assume any evolutionary
relationship between different recognized sequences. In
terms of scientific fields, that makes the SMM software
aimed at applications in biochemistry or molecular
biology.

Implementation

Code

The SMM algorithm is implemented in C++ code. Only
standard libraries or freely available external libraries were
used. The two external libraries are Tinyxml [4] to handle
the XML input and output and the Gnu Scientific Library
[5] for efficient vector and matrix operations. The source
code has been compiled and tested using Visual C++ on a
windows system and using g++ (1.5 or above) on a
Debian and Suse Linux system. A windows executable is
also available. The source code, documentation and
examples are available as additional files 1 and 2 of this
manuscript, and on the project homepage at http://

www.mhc-pathway.net/smm.

On a standard 2.6 GHz Pentium 4 PC running windows
XP, the creation of a prediction tool from a typical set of
training data containing 300 8-mer peptides takes about
10 minutes.

Input and output

The program expects an XML document as its standard
input. A more sophisticated (graphical) user interface is
not likely to be of great interest for the projected user com-
munity, most of which will probably call the executable
file from a script or integrate the code into an existing pro-
gram. The XML input document contains either training
data to generate a new tool (Figure 1) or sequences for
which a prediction should be made with a previously gen-
erated tool. The output of the program is again in XML
format. For all types of input and output, XML schemas
defining their exact structure are supplied. The schemas
contain annotation for each input element, documenting
their intended use. A simplified alternative input format
exists for the most common application, namely the gen-
eration of a scoring matrix from a set of standard amino
acid sequences. Several example input files are supplied
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<TrainingData>
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<Alphabet>ACDEFGHIKLMNPQRSTVWY </Alphabet> (1 )

<SequenceLength>8</SequenceLength>

<SequenceData>

<DataPoint> <

<Sequence>SGPKTNII</Sequence
<Measured>3.42</Mea

</DataPoint>

<DataPoint>

(2)

<Sequence>KCPALACT</Sequence>
<Threshold><Greater /> </Threshold> ¢——— (3)
<Measured>5.00</Measured>

</DataPoint>
</SequenceData>
</TrainingData>

Figure |

Input training data. The <TrainingData> element consists of a series of <DataPoints> (2). Each contains a sequence and a
measurement value. The characters allowed in <Sequence> are specified in <Alphabet> (1), and the number of characters has
to correspond to <SequencelLength> (1). In this example, <Alphabet> and <Sequencelength> specify 8-mer peptides in single
letter amino acid code. Each measurement can optionally be associated with a threshold (3) that can either be <Greater> or
<Lesser>, signaling that the measurement corresponds to an upper or lower boundary of measurable values.

with the program, which should make it easy for users to
create similar input files with their own data.

Core algorithm

An amino acid can be encoded as a binary vector of length
20, with zeros at all positions except the one coding for
the specific amino acid. Extending this notation, a peptide
of length N can be encoded as an N*20 binary vector. The
same conversion can be made for nucleic residues, result-

ing in N*4 length vectors. Any fixed length sequence can
be converted into a fixed length binary vector following
similar rules. The SMM algorithm expects such a vector as
the experimental input parameter 'x'.

For a set of experiments, the vectors tx (where tx indicates
the transposed vector x) can be stacked up resulting in a
matrix H. An example for a set of nucleic sequences is
shown in Figure 2. The matrix H is multiplied by a vector
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Input Input matrix H Vector w | | Yored |
sequences |  —m——— A Offset [ 10.0
Offset A1 C1 GI T1 A2 C2 G2 T2 A3 C3 G3 T3 |GIA3 A2A3l Al 3.2
I ! Ct 2.5
AAA 1t 1. 00 0 1 00 0 1 0 0 0j0 1, Gi 1.0 15.2
CAC 1t 0 1 0 0 1 00 0 0 1 0 010 0, T -4.7 14.6
GAA 1+ 0 0 1 0 1 0 0 0 1 0 0 011 1 A2 2.0 10.8
GCA |:> 1t 0o 0 1 0o 0 10 0 1 00 o'1 o1 c2 | _ |76
GTA 1 0 01 0 0 00 1 1 0 0 0,31 o0 G2 1.2 = | 64
GGT 1 001 0 001t 0 000 ty0 of T2 22 10.3
TCT 1t 000 1 0 1 0 0 0 0 0 110 0, A3 -0.2 4.4
T AA 1t 0 0 0 1 1 0 0 0 1 0 0 010 1, C3 0.1 7.3
T GG 1+ 0 0 0 1 0 0 1t 0 0 0 1 0Vo 0] a3 0.0 6.5
—— __ B__loL]
Pair 1 G1A3 0.2 1
coefficients |L A2A3 _ 1 02/!
Figure 2

Converting sequences into matrices. Input sequences of three nucleic acids each are converted to rows of a matrix H.
The first column of each row is set to |, which serves as a constant offset added to each prediction. Columns Al to T1 contain
a binary representation of the first residue in the sequence, in which all columns are set to zero except the one corresponding
to the residue. The same is repeated for the second and third residue in the sequence in columns A2 to T2 and A3 to T3. The
two last columns G1A3 and A2A3 contain pair coefficients explained at the end of the results section. They are set to one if
the two specified residues are present in the input sequence at the two specified positions and zero otherwise. Multiplying
matrix H with the weight vector w results in a vector y,.4 of predicted values for the sequences. Rows Al to T3 of vector w
are commonly written as a 'scoring matrix' which quantifies the contribution of each possible residue at each position to the
prediction. Rows G1A3 and A2A3 of vector w quantify the impact of the pair coefficients.

w which assigns a weight to each possible residue at each
position in the sequence. This generates a vector of predic-
tions Yy eq

HW=Ypred (1)

From a given training set of sequences encoded in H with
measured values y, ..., the 'correct' values for w can be
found by minimizing the difference between the pre-
dicted values y, .4 and the measured values y,,,, accord-
ing to a norm || ||. To suppress the effect of noise in the
experimental data, a second term is added to the
minimization:

[|HW - Vineas | + WA W - minimum, (2)

in which A is a positive scalar or a diagonal matrix with
positive entries. To better understand the effect of the A
term, consider first minimizing (2) with A set to zero. In
this case, the optimal entries for the weight vector w min-
imize the difference between predicted (yq) and meas-
ured (Yeas) Values. Minimizing (2) with a non-zero value
for A results in a shift of the optimal entries in w towards
values closer to zero, especially for entries in w that do not
significantly decrease the distance between predicted and
measured values. This technique, generally called regular-
ization, suppresses the effect of noise in the measured data

Vmeas O the entries in the weight vector w. Refer to [6] or
[7] for a general introduction to regularization. If the || ||
norm is simply the sum squared error (or L2 norm), equa-
tion (2) can be solved analytically for any given value of A
to:

w= (IHH + /\)-1 tH Ymeas (3)

The optimal value for A can then be determined by cross
validation: The experimental data points corresponding
to rows of (H, y,,...s) are randomly separated into training
sets Ti = (H' Ymeas)train i and blind sets (H' Ymeas)blind i Fora
given A, equation (3) is used to calculate w; for each train-
ing set T;. These w; can then be used to make predictions
for their corresponding blind sets. Summing the distances
for all blind predictions gives the cross validated distance
®:

P(A) = Z; || Hplind i WilA) Yolinai || (4)

Minimizing ® as a function of A therefore corresponds to
minimizing the cross validated distance by 'damping' the
influence of coefficients in w which are susceptible to
noise.

As the resulting optimal value for A and the correspond-
ing w; are somewhat influenced by the split into training
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and blind sets, the same procedure is repeated several
times with different splits, which is called bagging [8]. The
final w is generated by averaging over all optimal w; gen-
erated in the cross validation and bagging repeats.

Results and discussion

The following sections describe specific properties of the
SMM method, and are meant to serve as a guideline when
and how to apply it. Additional data validating the SMM
algorithm and comparing it with other prediction meth-
ods can be found in previous publications [1-3].

Linear model

If no pair coefficients are incorporated, the output vector
w of the SMM method is a standard 'scoring matrix',
which quantifies the contribution of each residue at each
position in the input sequence to the prediction. Such a
matrix is easy to interpret and analyze without requiring
any additional software or expert knowledge of how the
matrix was generated, which is especially important when
communicating results to experimentalists. Several meth-
ods predicting peptide binding to MHC molecules take
this approach, e.g. [9-12], and a comparative study
showed that simple statistical methods to generate matri-
ces can perform better than more complex artificial neural
networks if the amount of data is limited [13].

Using such a linear model implicitly assumes that the
influence of residues at each position in the sequence on
the measured value can be considered independent and
additive. This has to be a reasonable first approximation
in order to successfully apply the SMM method, even if
pair coefficients are incorporated. This is the main differ-
ence to general learning algorithms such as neural net-
works, which can in principle model any functional
relationship between sequences and measurements.

Quantitative data

The experimental measurements that serve as input to the
SMM method and the predicted output are quantitative,
not binary. For example, in the case of peptide binding to
MHC molecules, IC50 values quantifying binding affini-
ties are used, and not a classification into binding and
non-binding peptides.

If different representations of the quantitative data are
possible, such as either IC50 or log(IC50) values, a repre-
sentation should be chosen in which the y,.,, values
approximately follow a normal distribution. Otherwise
the SMM predictions, which are sums of independent
contributions and therefore roughly normally distributed
themselves, will not be able to fit the experimental data
well. In the case of binding affinities, this means
log(IC50) values should be used, as IC50 values them-
selves are usually log normal distributed.

http://www.biomedcentral.com/1471-2105/6/132

Noisy data

Experimental measurements inevitably contain noise.
This will cause problems when building models that take
the measured values to be exact. Accordingly, the SMM
method incorporates a regularization parameter A\ (equa-
tion 2), which corresponds to preferring a simpler solu-
tion with 'smooth' values for w to one that exactly
reproduces observations. In the first SMM applications
[1,2], A was a scalar, in which case this approach is called
Ridge regression or zero-order regularization. Choosing a
scalar value implicitly assumes that the level of signal to
noise is roughly the same at each position in the input
sequence. In the current version, A can also be chosen as
sequence position dependent, which is sometimes called
local Ridge regression. As shown for an example in Figure
3, this makes A into a diagonal matrix in which all A val-
ues belonging to residues at the same sequence position
are set to the same value. For a sequence of length N, there
are N different A values. For a number of training sets
containing peptide binding data to MHC molecules, we
compared the prediction performance achieved using a
position specific matrix A; to a scalar A. The position spe-
cific regularization nearly always resulted in better predic-
tions. The difference was especially large if the influence
of different sequence positions varied greatly (data not
shown).

Bounded data

Any experimental technique generates measured values
contained within a finite range. For example, in many bio-
logical experiments a "zero" measurement usually means
that the actual value is below the experimental resolution,
not that the actual value is 0. Similarly, very large values
beyond the expected sensitivity limit are no longer quan-
titatively accurate. These data points at the upper or lower
boundaries of the sensitivity range do not convey the
same information as quantified values, but they still do
contain information. In the case of MHC binding data
available to us, approximately 20% of peptides fall in this
category.

The SMM method is, to the best of our knowledge, the
only method designed to extract information from such
boundary values. This is done by means of the novel L2__
norm, illustrated in Table 1. For example, if an experimen-
tal measurement corresponds to an upper boundary y, ...
>z, and the predicted value is greater than z, then the dis-
tance between ., and y,..q is zero. This norm has the
useful property that any analytical solution according to
the L2 norm can be converted into a solution according to
the L2__ norm through an iterative process: First, all meas-
urements including boundary values are treated as normal
values, and the solution using the L2 norm is found. In a
second step, for each y, .4, Ymeas Value pair for which the
L2_. norm would be zero, the y, ., value is set to its
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Offset
A1
0 C1
A G1
A T1
A A2
A C2
A G2
A T2
O A A3
A C3

A G3
A T3

Sequence position dependent regularization. Example for the regularization term tw A w in equation (2). The weight
vector w corresponds to a scoring matrix for three nucleic acids as in Figure 2, but without pair coefficients. The diagonal
matrix A\ has three different values Al, A2 and A3 effecting values in vector w corresponding to sequence positions |, 2 and 3.

There is no regularization penalty on the 'Offset' value.

Table I: The L2_, norm

Measurement L2_, distance

Ypred > Ymeas Ypred < Ymeas

Quantitative (no threshold)
Upper boundary (threshold: greater)
Lower boundary (threshold: lesser)

(yPred-Ymeas)Z
(yPred'Ymeas) 2
(yPred 'Ymeas) 2 0

()'pred 'Ymeas) 2

corresponding y,,.q value. For these y,.,;* values, the dis-
tance Lz(Ypred/ Ymeas*) = L2<> (yPred' Ymeas)' These Ymeas*
values are then used to solve again according to the L2
norm. This process is repeated until the y,...* values no
longer change, as illustrated in Figure 4.

Randomized peptide library data

As stated before, the experimental data used as input for
the SMM method consists of same length amino-or
nucleic acid sequences associated with a quantitative
measurement. When designing an experiment, the
selection of sequences to test can introduce bias into the
training data, for example by over-or under-representing
residues at specific sequence positions. One way to avoid
this is the use of randomized peptide libraries, also known
as positional scanning combinatorial peptide libraries,
which are mixtures of peptides of the same length. In a
given library, all peptides have one residue in common at
a fixed position and a random mixture of amino acids at
all other positions. For example, the library XAXXXXXX

contains 8-mer peptides with a common Alanine at posi-
tion 2. Such libraries can be used to directly measure the
influence of their common residue, by comparing their
measured process efficiency to that of the completely ran-
domized library XXXXXXXX. In the case of 8-mer pep-
tides, 160 library experiments are sufficient to characterize
the influence of each residue at each position. The results
of such a complete scan can be summarized in a scoring
matrix. This approach has been used successfully in many
different experimental systems [14-17]

A novel feature of the SMM method is that it can combine
data from these two sources. When the SMM algorithm is
given experimental data from individual peptides and
from a randomized library summarized in a scoring
matrix maty,, it simply subtracts the values predicted by
maty;;, from each individual peptide measurement. These
Y'meas = Ymeas - Ypred lib Values are then used to generate a
second scoring matrix mat'. The final SMM scoring matrix
is simply the sum of the two: mat_,i,.q = Mat' + maty,.
Figure 5 compares the performance of this combined
approach to that of a prediction based on peptide or
library experiments alone. If enough peptide data is
present (roughly the same number as matrix parameters),
the combined prediction is better than that of the library
matrix alone. At all data points, the combined prediction
is better than that using the peptides alone. Importantly,
this simple strategy of subtracting library predictions can
be used in combination with any prediction method, and
is likely to generate similar results, as it effectively
increases the training set size. To visualize the prediction
quality associated with the distances reported in Figure 5,
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* (v y)
meas

w b
B ©

x ymeas*
> 2 1 0.8
2 1.8
1 3 3.0
= 4 2.8
0 T T T 5\ 3\.4
0 1 2 3 4 5 6
5
C
4 _
-kg 3 4 “
X ymeas*
> 2 - 1 038
2 1.8
1 - 3 3.0
= 4 2.8
0 T T T 5\ 3\.9
0 1 2 3 4 5 6
Figure 4

Iterative model fitting using the L2_, norm. In this
example, the model is a linear function which is fitted to a set
of paired values (X, ¥,,.,.)- For two of the x values (x = 3 and
x = 5), the measured values are thresholds (Greater 3). Fit-
ting a linear function to paired values according to the L2
norm corresponds to the standard linear regression. A
depicts the model fit (straight line) to the measured values
(black boxes), ignoring any thresholds. For x = 5, the model
value y,.q4 taken from the regression curve is 3.4, above the
measured threshold value 3. Therefore, in the next iteration
the y,...c* value is set to the model value 3.4. B shows the
new linear regression with the adjusted y,,.,.* values. This
procedure is repeated until the y,.,.* values no longer
change (8 iterations, panel C).

1.2
o
o 1.0 -
8 @ peptides only
.3 — = library only
-] B peptides + library
o
7]
© 0.8 u
]
[ o)
(71
D | ———— o — — o— — —
<4
© 06 1 [ |
(@}
|
0.4 T T
100 200 300 400
Number of peptides
Figure 5

Combining peptide and library data improves predic-
tion quality. A set of 449 9-mer peptides with measured
affinities for TAP taken from [20] was split into 5 blind sets.
For each of these blind sets, predictions where made from
different size subsets of the remaining peptides. The x-axis
depicts the number of peptides in these subsets used for gen-
erating predictions using either the peptides alone (circles)
or in combination with data from a combinatorial peptide
library (squares). The dashed line displays the prediction of
the library alone, which was taken from [15]. The y-axis
depicts the L2_, distance of the predictions for the combined
5 blind sets.

Figure 6 depicts a scatter plot of the predicted and meas-
ured binding affinity for individual peptides correspond-
ing to the data point with the lowest distance in Figure 5.

Introducing pair coefficients

Pair coefficients quantify the contribution of a pair of res-
idues to the measured value that deviates from the sum of
their individual contributions. The form of equation (1)
remains unchanged if pair coefficients are introduced in
the same binary notations as the individual coefficients.
Figure 2 gives an example how a set of nucleic sequences
is transformed into a matrix H, if two such pair coeffi-
cients are taken into account. Note that the number of
possible pair coefficients is very large. For a sequence of
three nucleic acids, there are already (3*4) * (2*4) /2 =
48 pair coefficients. For a 9-mer peptide, (9*20) * (8 * 20)
/ 2 = 14400 pair coefficients exist. To the best of our
knowledge, only the SMM method and the additive
method [18] explicitly quantify the influence of pair
coefficients.
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Measured log(ICso)

2 1 0 1 2 3 4 5 6
Predicted log(ICsp)

Figure 6

Visualization of prediction quality. Scatter plot of pre-
dicted vs. measured affinity for peptide binding to TAP. The
depicted prediction corresponds to the data point in figure 5
with the lowest cross-validated distance, in which 350 pep-
tides and the peptide library were used for training.

Since most training sets contain only a few hundred meas-
urements, determination of the exact values of all pair
coefficients is not feasible. To overcome this difficulty, the
SMM algorithm limits the number of pair coefficients to
be determined. First, only coefficients for which sufficient
training data exists are taken into account. As a rule of
thumb, 5 sequences containing the same pair of residues
at the same positions have to be present in the training set
for a pair coefficient to be considered. In a second filtering
step, only pair coefficients for which the information in
the training set is reasonably consistent are retained. In
the previous SMM version, this used to be determined by
multiple fitting of pair coefficients and discarding those
for which a sign change was observed. In the current ver-
sion, a much faster approach is used. First, a scoring
matrix is calculated for the training set without any pair
coefficients. Then, for each pair coefficient the predicted
and measured values for the sequences containing it are
compared. Only if a large enough majority (>60%) of
measured values are above or below the matrix based pre-
dictions is the pair coefficient retained. The remaining
pair coefficients are determined in complete analogy to
the scoring matrix itself, but with a scalar A value.

We tested the effect of incorporating pair coefficients on
prediction quality compared to using a scoring matrix
alone for a number of training sets containing peptide to
MHC binding data. The pair coefficients showed a consist-

http://www.biomedcentral.com/1471-2105/6/132

ent positive contribution for large training sets, which
comprise more measurements than 1.5 times the number
of scoring matrix coefficients. However, the improvement
is rather small, as reported before in [1]. This makes it rea-
sonable to ignore pair coefficients if the simplicity of a
scoring matrix is more valuable than a small improve-
ment in prediction quality.

If higher order sequence interactions such as those
described by pair coefficients are expected to be the dom-
inant influence on experimental outcomes, other predic-
tion methods may be better suited than the SMM method.
For example, by choosing a different sequence representa-
tion than the binary vectors, the information in the train-
ing set can be generalized, thereby effectively reducing the
degrees of freedom in the input parameters [19]. This
allows applying general higher order learning algorithms
such as artificial neural networks even with limited input
data.

Conclusion

The SMM method generates quantitative models of the
sequence specificity of biological processes, which in turn
can be used to understand and predict these processes. It
has previously been shown to perform very well com-
pared to other prediction methods and tools for three spe-
cific types of experimental data [1-3]. However, it is
difficult to generalize a comparison between different
methods, due to two main problems. First, the training
data sets utilized in different studies are often not
available, so that when comparing tools generated by
different methods it is often unclear when good perform-
ance is due to a superior method or a better (larger) set of
training data. Second, generating tools from the same
training set can be difficult, because publications that
make the tools available, often only describe the basic
principle of the method used.

To overcome this second obstacle, we herein presented a
computer program implementing the SMM method. Sig-
nificant effort was devoted to ensuring that the program is
robust, documented, cross platform compatible and
generates reasonable output without requiring additional
parameters. Also, any commercial libraries previously uti-
lized were removed to allow free distribution of the code.
This will permit any interested user to apply the SMM
method with reasonable effort, allowing for the most
important validation: application to scientific practice.

Finally, we believe that two strategies demonstrated in this
manuscript will be valuable in combination with other
prediction methods as well. First, our strategy for the
inclusion of experimental data gathered with randomized
peptide libraries can be directly transferred to any
prediction method. When other experimental data is lim-
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ited and data from a combinatorial library is available,
this should always have a positive effect on prediction
quality. Secondly, the L2__ norm can be applied as an
error function for other prediction methods. This will
increase the amount of training data effectively available
to prediction methods requiring quantitative input, by
enabling them to handle experimental boundary values.
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