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Abstract A key event in the generation of a cellular response
against malicious organisms through the endocytic pathway is
binding of peptidic antigens by major histocompatibility com-
plex class II (MHC class II) molecules. The bound peptide is
then presented on the cell surface where it can be recognized
by T helper lymphocytes. NetMHCIIpan is a state-of-the-art
method for the quantitative prediction of peptide binding to
any human or mouse MHC class II molecule of known se-
quence. In this paper, we describe an updated version of the
method with improved peptide binding register identification.
Binding register prediction is concerned with determining the
minimal core region of nine residues directly in contact with
the MHC binding cleft, a crucial piece of information both for
the identification and design of CD4+ T cell antigens. When
applied to a set of 51 crystal structures of peptide-MHC com-
plexes with known binding registers, the new method
NetMHCIIpan-3.1 significantly outperformed the earlier 3.0
version. We illustrate the impact of accurate binding core iden-
tification for the interpretation of T cell cross-reactivity using
tetramer double staining with a CMV epitope and its variants

mapped to the epitope binding core. NetMHCIIpan is publicly
available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1.

Keywords MHC class II . Peptide binding . Tcell
cross-reactivity . Binding core . Artificial neural networks .
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Introduction

Major histocompatibility complex class II (MHC class II)
molecules play an essential role in the cellular immune system
of vertebrates. The main function of MHC class II molecules
consists of loading short peptide fragments derived from ex-
ogenously derived antigenic proteins and presenting them on
the antigen presenting cell surface, where they can be recog-
nized by T helper lymphocytes. If the peptide fragment is of
foreign origin, the T cells can help initiating an appropriate
immune response (Castellino et al. 1997; Germain 1994;
Rudolph et al. 2006).

A key characteristic of T cells is that they are antigen spe-
cific, but also cross-reactive (Wilson et al. 2004). Specificity is
an indicator of the ability of T cells to discriminate between
different antigens, a crucial property that allows the immune
system to distinguish between self and non-self material. As
the number of potential peptidic antigens is much larger than
the T cell receptor (TCR) repertoire diversity, it appears inev-
itable that a single T cell should have the ability to recognize
multiple peptide-MHC complexes (Birnbaum et al. 2014;
Sewell 2012). This degeneracy in T cell recognition is com-
monly referred to as cross-reactivity, and has been implicated
both in immune protection and disease (Benoist and Mathis
2001; Lang et al. 2002; Welsh et al. 2010). The selection of T
cell epitopes is primarily driven by the delicate balance be-
tween specificity and binding degeneracy of both the MHC
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and the TCR. While the contribution of the MHC in the se-
lection of antigens has to a high degree been described and
explained, the role of the T cell receptor remains an essential
missing link in our understanding of Tcell immune responses.

Because the peptide-binding groove of MHC class II mole-
cules is open at both ends, there are limited constraints on the
length of the peptide ligand, which can protrude out at both
ends of the pocket. Although normally only about 9 amino
acids of the peptide, the so-called binding core, are directly
interacting with residues of the MHC groove, peptides of up
to 30 amino acids (even whole proteins) can be loaded onto
MHC class II molecules (Chicz et al. 1993; Sette et al. 1989).
Peptide-MHC binding affinity is largely determined by the pri-
mary amino acid sequence of the peptide-binding core. How-
ever, it has been shown that the peptide flanking regions (PFRs)
on either side of the binding core can affect peptide-MHC
binding and, ultimately, immunogenicity (Carson et al. 1997;
Godkin et al. 2001). Human MHC class II molecules (called
HLA class II, here abbreviated HLA-II) are highly polymor-
phic, comprising thousands of different allelic variants across
the population. HLA-II binding motifs are generally rather de-
generate, and promiscuous peptides with the ability to bind to
several alleles have been identified (Al-Attiyah and Mustafa
2004; Sturniolo et al. 1999). Promiscuous peptides can either
share the same anchors across different alleles, or contain over-
lapping binding cores with allele-specific anchors.

Given the critical role of MHC class II in the selection of
peptides for antigen presentation and immune response or-
chestration, large efforts have been dedicated to the develop-
ment of high-throughput methods for the screening of peptide
binding to MHC class II. Although significant progress has
been made toward developing cost-effective experimental
methods for screening of peptide binding to MHC class II
(exemplified by Justesen et al. (2009)), the cost of performing
an exhaustive characterization of the binding specificity of all
prevalent MHC class II molecules remains prohibitive.

Computational methods for the prediction of MHC class II
binding, an attractive alternative to costly experimental
methods, have evolved steadily in the past years. They include
ARB (Bui et al. 2005), SVRMHC (Wan et al. 2006),MHCpred
(Doytchinova and Flower 2003), NetMHCII (Nielsen and
Lund 2009), TEPITOPE (Sturniolo et al. 1999), and a limited
number of pan-specific methods covering also molecules for
which scarce or no measured binding data are available, in-
c luding TEPITOPEpan (Zhang et a l . 2012) and
NetMHCIIpan-3.0 (Karosiene et al. 2013). With variable de-
grees of accuracy, all these methods allow the identification of
peptides that are likely binders of MHC class II molecules.
However, when it comes to identification of the MHC binding
core, most of these methods have limited predictive perfor-
mance (Zhang et al. 2012). The current version of
NetMHCIIpan (version 3.0) achieves a higher performance
than TEPITOPEpan in terms of predicted binding affinity;

however, it is less accurate for the task of identifying the
correct binding core (Zhang et al. 2012).

The NetMHCIIpan method is based on an ensemble of arti-
ficial neural networks trained on quantitative peptide binding
data covering multiple MHC class II molecules. Ensembles are
in general superior to individual networks because the selection
of the networks weights is an optimization problem with many
local minima (Hansen and Salamon 1990). However, although
most networks in the ensemble may pick up the salient charac-
teristics distinguishing binders from non-binders in terms of
amino acid preferences and binding anchors, they often dis-
agree on the precise location of the minimal 9-mer core resi-
dues interacting with the MHC cleft. We have previously
shown (Andreatta et al. 2011) that the identification of the
binding core by neural network ensembles can be greatly im-
proved with the employment of a network alignment procedure
called Boffset correction^. This method is fully automated, and
unsupervised. This means that no information about the actual
location of the binding core is used to define the offset values.

In this paper, we apply offset correction to theNetMHCIIpan
network ensemble to enhance MHC class II binding core rec-
ognition. Besides accurately identifying the binding core, the
method assigns reliability scores to each binding core prediction
and allows the quantification of the likelihood of multiple bind-
ing cores within a single antigenic peptide. Using tetramer dou-
ble staining with a CMV epitope and its variants, we illustrate
the importance of reliable binding core identification for the
interpretation of T cell recognition and cross-reactivity.

Materials and methods

Data sets

The method was trained on data used in the original
NetMHCIIpan-3.0 publication (data available at http://www.
cbs.dtu.dk/suppl/immunology/NetMHCIIpan-3.0). This set
consists of quantitative peptide-MHC class II binding data
from the Immune Epitope Database (Vita et al. 2015). It com-
prises 52,062 affinity measurements covering 24 HLA-DR, 5
HLA-DP, 6 HLA-DQ, and 2 murine H-2 molecules. The IC50

(half inhibitory concentration) values in nM were log-
transformed using the formula 1-log(IC50)/log(50,000) as de-
scribed by Nielsen et al. (2003) to fall in the range between 0
and 1. Additionally, a set of 9860 binding affinity measure-
ments covering 13 HLA-DR alleles introduced by Karosiene
et al. (2013) was used as an independent evaluation set.

For the binding core benchmark, we compiled a list of 51
crystal structures of peptide-MHC class II complexes from the
PDB database (Rose et al. 2015). They comprise 36 HLA-DR,
6 HLA-DQ, 5 HLA-DP, and 4 H-2 structures with a bound
peptide in their binding cleft. The minimal 9-mer cores were
manually annotated by pinpointing in the 3-D structures the
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peptide residues in contact with the MHC anchor pockets
(typically positions P1, P4, P6, and P9, depending on the
allele).

Neural network architecture and training

The input sequences were presented to the input layer of each
network as described by Nielsen et al. (2008), using only
BLOSUM encoding, where each amino acid is encoded as
the BLOSUM50 matrix score vector of 20 amino acids
(Henikoff and Henikoff 1992). The optimal 9-mer core of a
peptide therefore required 9×20=180 input neurons. Forty
additional input neurons were used to encode the composition
of the peptide flanking regions (PFRs), calculated as the av-
erage BLOSUM scores on a maximum window of three ami-
no acids at either end of the binding core (Nielsen et al. 2008).
C- and N-terminal PFR lengths (LPFR) were each encoded
using two input neurons with values LPFR/(LPFR+1) and 1-
LPFR/(LPFR+1) respectively. The peptide length L was
encoded with two input neurons taking the values LPEP and
1-LPEP, where LPEP=1/(1+exp((L-15)/2)). These transforma-
tions ensure that the normalized input values to the neural
networks fall in the range between 0 and 1. MHC molecules
were represented in terms of a pseudo-sequence defined by
polymorphic residues in potential contact with a bound pep-
tide (Nielsen et al. 2007a). We used the same pseudo-
sequences of 34 residues for the MHC alpha and beta chains
defined by Karosiene et al. (2013), resulting in additional 34×
20=680 inputs. As a result, the total size of the input layer
amounted to 906 neurons.

The ensemble of artificial neural networks was trained as
described by Karosiene et al. (2013), using a fivefold cross-
validation; alternative hidden layers of 10, 15, 40, and 60
hidden neurons; and 10 initial configurations of the network
weights for each architecture. Starting from an initial random
weight configuration, the networks were trained in an iterative
manner by predicting the strongest binding 9-mer core for
each training sequence and subsequently minimizing the dif-
ference between its predicted and measured binding affinity.
No experimental information about the location of the binding
core was used in the model construction. This procedure was
repeated multiple times using different initial random config-
urations to construct the multiple networks that constitute the
NetMHCIIpan ensemble. The resulting complete ensemble
was composed of 200 networks. Predictions of binding affin-
ity were then calculated as the ensemble average, and binding
cores as the majority vote (for details see Nielsen et al.
(2010)). In order to minimize over-estimation of predictive
performance, the subsets for cross-validation were generated
using the procedure described byNielsen et al. (2007b), which
clusters together peptides that share identical stretches of at
least nine amino acids.

NetMHCIIpan-3.1 was trained on the same data set and
with a nearly identical architecture to the previous version
NetMHCIIpan-3.0. The only difference affecting the prediction
binding affinity is the encoding of the PFR lengths to correct
for a small inconsistency in the previous version of the method,
which truncated the right but not the left PFR to a maximum of
three amino acids. Note, that offset correction does not affect
the prediction of binding affinity. In a fivefold cross-validation
experiment on the 37 molecules included in the training set, the
performances of NetMHCIIpan-3.1 and 3.0 were not signifi-
cantly different, with an average area under the ROC curve
(AUC) of 0.870 for the former and 0.871 for the latter. The
AUC value weighed by the number of sequences per allele was
0.871 for both versions. Similarly, on an independent test set
comprising additional 9860 peptide-MHC complexes not in-
cluded in the training, the predictive performances of versions
3.0 and 3.1 are not significantly different and both reach an
averaged AUC=0.808 and weighed AUC=0.807.

Calculation of offsets

Offset correction, introduced by Andreatta et al. (2011), is a
procedure that allows combining the binding core prediction
of multiple neural networks in an ensemble. The sequence mo-
tif identified by each network is first represented as a position-
specific scoring matrix (PSSM), storing the background-
corrected frequency of each amino acid at each position in
the binding core. Next, using Gibbs sampling, the PSSMs are
aligned to generate an average PSSM with highest Kullback-
Leibler distance (KLD) from the background amino acid fre-
quency in natural proteins. The extent of the shift to the left or
to the right produced by the alignment for each PSSM (and its
relative network) is the Boffset^ value associated to that given
network.When the prediction for a peptide is made, the optimal
binding core of each network is shifted according to its relative
offset value. This procedure, previously shown to improve the
identification of binding motifs of individual HLA-DP and DQ
molecules (Andreatta and Nielsen 2012), is here generalized
for the pan-specific MHC class II binding problem.

Core reliability scores

We define the core reliability score as the fraction of networks
in the ensemble that agrees on a given binding core register.
The complete profile of reliability scores for a peptide-MHC
pair is referred to as the core histogram, and the optimal core
selected byNetMHCIIpan-3.1 is the core with highest reliabil-
ity score (i.e., the majority vote).

Peptide binding to HLA class II

Peptide-HLA class II binding affinities were determined as
previously described (Justesen et al. 2009). Briefly, denatured
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and purified recombinant HLA class II α- and β-chains were
diluted into a refolding buffer containing graded concentra-
tions of the test peptide, and incubated for 48 h at 18 °C to
allow for equilibrium to be reached.

Complex formation was detected using a proximity-based
luminescent oxygen channeling immunoassay and the peptide
concentration leading to half-saturation (ED50) was deter-
mined as previously described (Justesen et al. 2009). Under
the limited receptor concentrations used here, the ED50 re-
flects the affinity of the interaction.

HLA class II tetramers

HLA class II tetramers were produced as previously de-
scribed. Briefly, recombinant α- and β-chains (HLA-DRA1
and DRB5*01:01) were folded in the presence of either the
wild-type IE1211-225 peptide, P3 variant, or P7 variant of the
wild-type peptide. The resulting monomers were tetramerized
with PE- or APC-conjugated streptavidin.

PBMC’s from a donor previously determined to recognize
the DRB5*01:01 restricted CMV IE1211–225 epitope
(Braendstrup et al. 2014) was expanded on this epitope. The
cells were double-stained with PE-labeled wild-type IE1211–225
-DRB5*01:01 tetramer and APC-labeled mutant peptide-
DRB5*01:01 tetramer as previously described (Braendstrup
et al. 2013). The cells were washed and subsequently stained
with anti-CD3-Pacific blue and anti-CD4-PerCP antibody
(Biolegend, San Diego, USA) for 30min. The stained cells were
analyzed by flow cytometry on a Fortessa (BD Biosciences).

Results

Accurate prediction of the peptide-binding core register

The main innovation in NetMHCIIpan-3.1 is the introduction
of offset correction to improve the identification of the peptide
binding core register. We compiled a list of 51 crystal struc-
tures of peptide-MHC class II complexes from PDB (Rose
et al. 2015), inspecting the location of the bound peptide core
within the MHC binding groove. Note that only one of these
peptide-MHC pairs is present in the training set and only ten
additional peptides are present with extended residues either at
the N or C terminal. However, since the location of the bind-
ing core is never used as training information (learning is
uniquely based on the affinity values), evaluating the predic-
tive performance in terms of correctly identified binding cores
remains entirely independent.

Several predictors were applied to this set of peptides-
MHC structures to identify the location of the peptide binding
cores. On the 36 peptides in complex with HLA-DR alleles,
we made binding core predictions using NetMHCII-2.2
(Nielsen et al. 2007b), NetMHCIIpan-3.0 (Karosiene et al.

2013) , and TEPITOPEpan (Zhang et a l . 2012) .
NetMHCIIpan-3.1 identified correctly 33 out of 36 binding
core registers, compared to 26 correct cores for
NetMHCIIpan-3.0 and 32 correct cores for TEPITOPEpan
(see Table 1). NetMHCII-2.2 is not a pan-specific method
and only covers a subset of the alleles in the benchmark. On
the subset of 31 peptide-MHCs covered byNetMHCII-2.2, the
core was predicted correctly in 20 cases. On this subset of
peptides, NetMHCIIpan-3.1 recognizes the correct binding
core in 28/31 instances. The comparison to NetMHCIIpan-
3.0 and NetMHCII-2.2 is in both cases statistically significant
(p<0.01, comparison of ratios).

On a set of 15 peptides in complex with HLA-DP, HLA-
DQ, and H-2 molecules, NetMHCIIpan-3.1 predicted the cor-
rect binding core in 12 cases, whereas NetMHCIIpan-3.0 was
correct in 9 cases (Table 2). TEPITOPEpan is limited to HLA-
DR and cannot produce predictions for these molecules.

Offset values are conserved within different MHC loci

Offset values for the 200 networks in the ensemble were cal-
culated for all HLA-DR, HLA-DP, HLA-DQ, and H-2 mole-
cules in the training set. Figure 1 shows the cumulative distri-
bution of the number of networks that have assigned the same
offset value on at least x% molecules in the same locus or on
all molecules, where x is the value on the x-axis. For instance,
the same offset value was found across the 24 HLA-DR mol-
ecules (100 % agreement) for 135 networks, whereas 180
networks have at least 75 % offset agreement, and all 200
networks have the same offset for at least 50 % of the HLA-
DR molecules. Observing that offset values to a high degree
are conserved across alleles in a given locus (more than 50 %
of the networks agree on all alleles in a given locus) but not
across loci (rhombus series in Fig. 1), we used a majority vote
scheme to compile a separate list of offset values for each
locus HLA-DR, DP, DQ, and H-2. The advantage of a single
list of offsets per locus, as opposed to offset values for each
molecule, is that it can be applied in a pan-specific manner to
other alleles in the same locus that were not included in the
training set. Besides covering a comprehensive list of over
5000 MHC class II molecules to choose from, the method
can handle custom MHC amino acid sequences. In this case,
the list of offset values calculated over all isotypes is used.

Reliability scores profiles

The output of the NetMHCIIpan-3.1 server comprises graphi-
cal profiles of the core reliability scores of binding peptides.
Score profiles offer a probabilistic representation of the location
of the binding core by displaying the fraction of networks in the
neural network ensemble that select any given binding register.
In cases where the networks identify a clear and unequivocal
binding core, the reliability score profile will show a single
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peak at the P1 of the predicted binding core. For example, the
peptide PVSKMRMATPLLMQA comprised in the PDB
benchmark (Table 1) is predicted to be a strong binder to
HLA-DRB1*03:01 with a predicted affinity of 11 nM. Most
networks (89 %) place the P1 of the binding core at position 4
in the peptide, predicting the 9-mer core to be MRMATPLLM
(Fig. 2a). In other cases, the binding core is more degenerate.
For instance, the peptide NPVVHFFKNIVTPRTPPPSQ is pre-
dicted to be a strong binder to the molecule HLA-DRB5*01:01
(predicted affinity = 22 nM), but its reliability core profile
shows two possible binding cores each with reliability score
>0.4 (Fig. 2b). The core FKNIVTPRT identified by the
NetMHCIIpan-3.1 is the correct register as seen in the PDB
crystal structure 1FV1; however, also the shifted version

FFKNIVTPR satisfies well the anchor requirements for
DRB5*01:01 and is suggested by the profile as an alternative
binding register. Toggling the reliability profile graphical op-
tion in the NetMHCIIpan-3.1 server submission page generates
such profiles for any submitted sequence.

Reliability scores correlate with predicted binding core
correctness

As discussed in the methods, we defined a reliability score
assigned to each core prediction as the fraction of networks
in an ensemble that select a given binding core register.
NetMHCIIpan-3.1 produces a reliability score for the optimal
register of each predicted binder as part of its prediction. For

Table 1 Prediction of peptide binding core registers for 36 peptide/HLA-DR complexes from PDB

QMLLPTAMR

PDB Allele Antigen Core (PDB) NetMHCII NetMHCIIpan-3.0 TEPITOPEpan NetMHCIIpan-3.1 Reliability

2FSE DRB1*01:01 AGFKGEQGPKGEPG FKGEQGPKG FKGEQGPKG FKGEQGPKG FKGEQGPKG FKGEQGPKG 0.910
1J8H DRB1*04:01 PKYVKQNTLKLAT YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL 0.910
1FYT DRB1*01:01 PKYVKQNTLKLAT YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL YVKQNTLKL 0.905
3L6F DRB1*01:01 APPAYEKLSAEQSPP YEKLSAEQS YEKLSAEQS YEKLSAEQS YEKLSAEQS YEKLSAEQS 0.900
2Q6W DRB3*01:01 AWRSDEALPLGS WRSDEALPL WRSDEALPL WRSDEALPL WRSDEALPL WRSDEALPL 0.900
1A6A DRB1*03:01 PVSKMRMATPLLMQA MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM MRMATPLLM 0.890
2IPK DRB1*01:01 XPKWVKQNTLKLAT WVKQNTLKL WVKQNTLKL WVKQNTLKL WVKQNTLKL WVKQNTLKL 0.875
1SJH DRB1*01:01 PEVIPMFSALSEG VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS 0.870
4H1L DRB3*03:01 QHIRCNIPKRISA IRCNIPKRI IRCNIPKRI IRCNIPKRI IRCNIPKRI 0.855
3QXA DRB1*01:01 PVSKMRMATPLLMQA MRMATPLLM KMRMATPLL MRMATPLLM MRMATPLLM MRMATPLLM 0.840
3PGD DRB1*01:01 KMRMATPLLMQALPM MRMATPLLM KMRMATPLL MRMATPLLM MRMATPLLM MRMATPLLM 0.835
3PDO DRB1*01:01 KPVSKMRMATPLLMQALPM MRMATPLLM KMRMATPLL MRMATPLLM MRMATPLLM MRMATPLLM 0.835
1AQD DRB1*01:01 VGSDWRFLRGYHQYA WRFLRGYHQ WRFLRGYHQ WRFLRGYHQ WRFLRGYHQ WRFLRGYHQ 0.830
1PYW DRB1*01:01 XFVKQNAAALX FVKQNAAAL FVKQNAAAL FVKQNAAAL FVKQNAAAL FVKQNAAAL 0.820
1KLG DRB1*01:01 GELIGTLNAAKVPAD IGTLNAAKV IGTLNAAKV IGTLNAAKV IGTLNAAKV IGTLNAAKV 0.805
3C5J DRB3*03:01 QVIILNHPGQISA IILNHPGQI IILNHPGQI VIILNHPGQ IILNHPGQI 0.780
4H26 DRB3*03:01 QWIRVNIPKRI IRVNIPKRI IRVNIPKRI IRVNIPKRI IRVNIPKRI 0.760
4OV5 DRB1*01:01 GSDARFLRGYHLYA ARFLRGYHL ARFLRGYHL ARFLRGYHL FLRGYHLYA ARFLRGYHL 0.705
4IS6 DRB1*04:01 WNRQLYPEWTEAQRLD LYPEWTEAQ LYPEWTEAQ LYPEWTEAQ LYPEWTEAQ LYPEWTEAQ 0.690
4H25 DRB3*03:01 QHIRCNIPKRIGPSKVATLVPR IRCNIPKRI IGPSKVATL IRCNIPKRI IRCNIPKRI 0.675
1SJE DRB1*01:01 PEVIPMFSALSEGATP VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS VIPMFSALS 0.655
1H15 DRB5*01:01 GGVYHFVKKHVHES YHFVKKHVH YHFVKKHVH YHFVKKHVH YHFVKKHVH YHFVKKHVH 0.620
1T5X DRB1*01:01 AAYSDQATPLLLSPR YSDQATPLL YSDQATPLL YSDQATPLL YSDQATPLL YSDQATPLL 0.615
1BX2 DRB1*15:01 ENPVVHFFKNIVTPR VHFFKNIVT VVHFFKNIV VVHFFKNIV VHFFKNIVT VHFFKNIVT 0.615
4MD4 DRB1*04:01 ATEYRVRVNSAYQDK YRVRVNSAY YRVRVNSAY YRVRVNSAY YRVRVNSAY YRVRVNSAY 0.605
2SEB DRB1*04:01 AYMRADAAAGGA MRADAAAGG YMRADAAAG YMRADAAAG YMRADAAAG YMRADAAAG 0.595
1ZGL DRB5*01:01 VHFFKNIVTPRTPGG FKNIVTPRT FFKNIVTPR FFKNIVTPR FKNIVTPRT FKNIVTPRT 0.570
4I5B DRB1*01:01 VVKQNCLKLATK VVKQNCLKL VKQNCLKLA VVKQNCLKL VVKQNCLKL VKQNCLKLA 0.560
4MD5 DRB1*04:04 SAVRLRSSVPGVR VRLRSSVPG VRLRSSVPG AVRLRSSVP VRLRSSVPG VRLRSSVPG 0.555
1HQR DRB5*01:01 VHFFKNIVTPRTP FKNIVTPRT FFKNIVTPR FFKNIVTPR FKNIVTPRT FKNIVTPRT 0.555
4MCZ DRB1*04:01 GVYATRSSAVRLR YATRSSAVR YATRSSAVR VYATRSSAV VYATRSSAV VYATRSSAV 0.515
4MCY DRB1*04:01 SAVRLRSSVPGVR VRLRSSVPG VRLRSSVPG VRLRSSVPG VRLRSSVPG VRLRSSVPG 0.510
1FV1 DRB5*01:01 NPVVHFFKNIVTPRTPPPSQ FKNIVTPRT FFKNIVTPR FFKNIVTPR FKNIVTPRT FKNIVTPRT 0.480
1YMM DRB1*15:01 ENPVVHFFKNIVTPRGGSGGGGG VHFFKNIVT VVHFFKNIV VVHFFKNIV VHFFKNIVT VHFFKNIVT 0.460
4MDI DRB1*04:02 SAVRLRSSVPGVR VRLRSSVPG VRLRSSVPG VRLRSSVPG VRLRSSVPG 0.395
4AEN DRB1*01:01 MPLAQMLLPTAMRMKM MLLPTAMRM LAQMLLPTA MLLPTAMRM MLLPTAMRM 0.315

Correct: 20/31 26/36 32/36 33/36
Core (PDB) is the validated binding register as observed in the PDB crystal structures. Results are sorted by decreasing reliability score, and incorrect
predictions are highlighted in grey
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the 51 peptide-MHCs in Tables 1 and 2, sorted by reliability
scores, we observe that false core prediction tend to fall in the
lower part of the list (i.e., they have lower reliability scores). In
particular, with a threshold on the reliability score = 0.6 (at
least 60 % of the networks in the ensemble agreeing on the
best binding core), we obtain 30 peptides with correctly pre-
dicted cores without a single false positive.

Generally, HLA-DQ molecules appeared to have lower re-
liability scores than molecules from different isotypes (both in
the cases exemplified in Table 2 and in further predictions not
shown here). A previous characterization of the binding mo-
tifs of HLA-DQ molecules (Andreatta and Nielsen 2012)

showed rather degenerate motifs and less-defined binding an-
chors compared to HLA-DR and HLA-DP. Our results con-
firm this observation and suggest a more promiscuous binding
mode over alternative binding cores for HLA-DQ.

Interpretation of Tcell cross-reactivity guided by accurate
core identification

To illustrate how accurate identification of the binding core of
MHC class II ligands can aid the interpretation of T cell cross-
reactivity, we generated a set of five variants of the CMV
epitope IE1211–225 (NIEFFTKNSAFPKTT) restricted to
HLA-DRB5*01:01 (Braendstrup et al. 2014). The peptide-
binding core of the WT peptide was identified using the
NetMHCIIpan-3.1method. Then, we introduced targeted mu-
tations at the primary P1 anchor position and at two additional
non-anchor MHC positions. The complete set of peptide var-
iants is listed in Table 3.

From these peptide variations and corresponding binding
affinity and binding core predictions, we would expect the P1
variant to lose binding to the HLA molecule, whereas the
effect on MHC binding for all the P3 and P7 variants should
be minimal. In terms of T cell cross-reactivity, we would pre-
dict that the P3 and P7 variants with conservative mutations
would be cross-reactive with T cells raised against the WT
peptide, whereas the P3 and P7 variants with non-
conservative mutations would not (Frankild et al. 2008). In
order to validate these predictions, we made tetramers of the
six peptides (WT and variants) and tested for cross-reactivity
of the variants to the WT peptide (Fig. 3).

Table 2 Prediction of peptide binding core registers for 14 peptides in complex with HLA-DP, HLA-DQ, and H-2 molecules from PDB

HATQGVTAA

PDB Allele Antigen Core (PDB) NetMHCIIpan-3.0 NetMHCIIpan-3.1 Reliability

1JK8 DQA1*03:03-DQB1*03:02 LVEALYLVCGERGG EALYLVCGE EALYLVCGE EALYLVCGE 0.685
1S9V DQA1*05:05-DQB1*02:01 LQPFPQPELPY PFPQPELPY LQPFPQPEL LQPFPQPEL 0.505
1UVQ DQA1*01:02-DQB1*06:02 MNLPSTKVSWAAVGGGGSLV LPSTKVSWA TKVSWAAVG TKVSWAAVG 0.440
4GG6 DQA1*03:01-DQB1*03:02 QQYPSGEGSFQPSQENPQ EGSFQPSQE EGSFQPSQE EGSFQPSQE 0.420
4D8P DQA1*03:01-DQB1*02:01 PQPEQPEQPFPQP EQPEQPFPQ EQPEQPFPQ EQPEQPFPQ 0.340
4OZG DQA1*05:05-DQB1*02:01 APQPELPYPQPGS PQPELPYPQ PQPELPYPQ PQPELPYPQ 0.300

4P4K DPA1*01:03-DPB1*02:01 QAFWIDLFETIG FWIDLFETI FWIDLFETI FWIDLFETI 0.650
4P57 DPA1*01:03-DPB1*02:01 QAFWIDLFETIGGGSLV FWIDLFETI FWIDLFETI FWIDLFETI 0.630
3LQZ DPA1*01:03-DPB1*02:01 RKFHYLPFLPSTGGS FHYLPFLPS RKFHYLPFL FHYLPFLPS 0.625
3WEX DPA1*02:01-DPB1*05:01 KVTVAFNQFGGS KVTVAFNQF KVTVAFNQF VAFNQFGGS 0.450
4P5M DPA1*01:03-DPB1*02:01 QAYDGKDYIALKG YDGKDYIAL YDGKDYIAL YDGKDYIAL 0.425

1MUJ H-2-IAb PVSKMRMATPLLMQA MRMATPLLM MRMATPLLM MRMATPLLM 0.725
4P23 H-2-IAb FEAQKAKANKAVD AQKAKANKA FEAQKAKAN AQKAKANKA 0.475
1IAO H-2-IAd ISQAVHAAHAEI SQAVHAAHA ISQAVHAAH SQAVHAAHA 0.475
2IAD H-2-IAd HATQGVTAASSHE TQGVTAASS TQGVTAASS 0.420

Correct: 9/15 12/15
Core (PDB) is the validated binding register as observed in the PDB crystal structures. Results are sorted by decreasing reliability score, and incorrect
predictions are highlighted in grey

Fig. 1 Offset value conservation across MHC alleles. The plot shows a
cumulative distribution of the number of networks (out of the 200 in the
ensemble) that were assigned the same offset value on at least x%
molecules. Within the same locus, the offset values are highly
conserved, whereas there is more discordance across loci (rhombus
series with continuous line)
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In all five cases, the tetramer and binding affinity measure-
ments confirmed our predictions. The P1 variant had lost its
binding to the HLA-DRB5*01:01 molecule, and no tetramers
could be formed. The two conservative P3 and P7 variants
showed close to 100 % cross-reactivity to the WT epitope,
and the non-conservative variants displayed a significant loss
in cross-reactivity to the WT in both cases.

Discussion

Prediction of peptide-MHC class II binding involves answer-
ing two questions: does the peptide bind to the MHC, and if

so, where does it bind. Addressing the first question, predic-
tion of binding affinity for MHC class II has reached, depend-
ing on the molecule of interest and method employed, perfor-
mance values between 0.80 and 0.90 in terms of AUC. In
particular, the state-of-the-art method NetMHCIIpan-3.0
(Karosiene et al. 2013) can produce accurate binding predic-
tions for any HLA-DR, DP, DQ, and H-2 molecule of known
sequence, and the prediction values can readily be interpreted
in terms of IC50 binding affinity.

However, when it comes to the second question, we have
shown here that NetMHCIIpan-3.0 often fails to identify the
correct binding register. As the peptide-binding groove of
MHC class II molecules is open at both ends, long peptide

Fig. 2 Core reliability profiles for two peptide-MHC complexes in the
PDB benchmark. The x-axis shows the location of the first position (P1)
of the 9-mer core within the peptide, also highlighted with uppercase

characters on top of the plot. The height of each bar is the core reliability
score assigned by NetMHCIIpan-3.1 to each alternative core register

Table 3 Targeted mutations to a CMVepitope and their impact on MHC binding and T cell cross-reactivity

Peptide Mutation IC50 Rank (%) Core reliability Measured IC50 (nM) % Cross-reactivity

NIEFFTKNSAFPKTT WT 7.19 0.40 0.818 14 100

NIEFETKNSAFPKTT P1 F→E 656 50.0 0.400 173 NB

NIEFFTRNSAFPKTT P3 K→R 6.52 0.30 0.855 7 94

NIEFFTYNSAFPKTT P3 K→Y 7.37 0.40 0.815 8 3

NIEFFTKNSAYPKTT P7 F→Y 8.71 0.80 0.800 12 97

NIEFFTKNSARPKTT P7 F→R 6.77 0.40 0.800 20 41

The data set contains a wild-type CD4 epitope for themolecule HLA-DRB5*01:01 obtained fromBraendstrup et al. (2014), and five variants constructed
as described in the text. The predicted binding core for the WT peptide is underlined, mutations are highlighted in bold. Conservative mutations were
defined as having a positive Blosum62 score, and non-conservative mutations as having a negative Blosum62 score. Predicted IC50, Rank and Core
reliability values were obtained using the NetMHCIIpan-3.1 method. Measured IC50 was obtained as described in methods. % Cross-reactivity is the
percent of CD4 Tcells specific for theWT tetramer that also share specificity of the peptide variant. NB indicates that no tetramer formation was detected
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ligands can potentially bind with alternative 9-residue core
sequences forming interactions with the MHC binding
pockets. It is important to stress that the neural networks of
NetMHCIIpan are only trained on affinity data and not on the
binding registers, which are rather learned as a by-product of
the procedure. Because the individual networks constituting
the NetMHCIIpan ensemble of 200 networks are trained on
different subsets of the data set and alternative configurations,
they may disagree on the placement of the binding core reg-
ister, leaving us with the problem of combining their
predictions.

In the method presented in this paper, we applied Boffset
correction,^ a procedure that allows combining the predictions
of different neural networks in an ensemble, to obtain im-
proved core register identification with unaltered binding af-
finity performance. When employed on a set of 51 crystal
structures of peptide-MHC complexes with known binding
register, the new methodNetMHCIIpan-3.1 identified the cor-
rect core register in 45 cases, improving from the 35 correct
predictions of NetMHCIIpan-3.0. Besides achieving a higher
performance in terms of predicted binding affinity than
TEPITOPEpan (Zhang et al. 2012), NetMHCIIpan-3.1 also
has comparable accuracy in terms of predicted binding cores,
and can be applied on a wider range of MHC class II mole-
cules. Using this improved method, we illustrate the

importance of accurate binding core identification for the in-
terpretation of T cell cross-reactivity using tetramer double
staining with a CMV epitope and selected variants defined
with respect to the epitope binding core.

Precise identification of the peptide binding register is
imperative for the fine characterization of the MHC class II
binding pocket, both for the discovery and design of pep-
tides with the ability to give rise to MHC recognition. Al-
tering peptide-MHC anchors does in most cases abolish
binding, whereas mutations in other positions that are not
directly in contact with the binding core can often be ac-
cepted without losing binding to the MHC (Anderson and
Gorski 2003). In cases where cross-reactivity occurs, pep-
tides with mutated non-anchor amino acids can still be
recognized by the TCR and stimulate an immune response
(Basu et al. 2000). In addition to this, several studies dem-
onstrated the relationship between the MHC binding core
and patterns of TCR recognition (Arnold et al. 2002;
Bremel and Homan 2014). Thus, reliable binding core
identification could facilitate identification of TCR recog-
nition motifs for CD4+ T cell epitopes.

In summary, we showed thatNetMHCIIpan-3.1 is the state-
of-the-art both for the quantitative prediction of binding affin-
ity and the identification of the peptide binding core register.
The prediction program is publicly available as a convenient

Fig. 3 T cell cross-recognition
between P3 and P7 variants and
the wild-type epitope IE1211–225.
T cells were expanded for 12 days
on the wild-type peptide IE1211–
225 peptide (wt). The specific T
cells were double stained with in
all cases PE-labeled IE1211–225 /
DRB5*01:01 together within a
APC-labeled P3(K→R)variant/
DRB5*01:01 tetramer; in b APC-
labeled P3(K→Y)variant/
DRB5*01:01 tetramer; in c APC-
labeled P7(F→Y)variant/
DRB5*01:01 tetramer; in d APC-
labeled P7(F→R)variant/
DRB5*01:01. The cells were
subsequently stained for anti-CD3
and -CD4. The plots show gated
CD4+ T cells, and the frequency
of tetramer+ CD4+T cells is
indicated
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and easy-to-use web server at http://www.cbs.dtu.dk/services/
NetMHCIIpan-3.1.
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