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ABSTRACT

Antibodies have become an indispensable tool for
many biotechnological and clinical applications.
They bind their molecular target (antigen) by rec-
ognizing a portion of its structure (epitope) in a
highly specific manner. The ability to predict epi-
topes from antigen sequences alone is a complex
task. Despite substantial effort, limited advancement
has been achieved over the last decade in the ac-
curacy of epitope prediction methods, especially for
those that rely on the sequence of the antigen only.
Here, we present BepiPred-2.0 (http://www.cbs.dtu.
dk/services/BepiPred/), a web server for predicting
B-cell epitopes from antigen sequences. BepiPred-
2.0 is based on a random forest algorithm trained
on epitopes annotated from antibody-antigen protein
structures. This new method was found to outper-
form other available tools for sequence-based epi-
tope prediction both on epitope data derived from
solved 3D structures, and on a large collection of
linear epitopes downloaded from the IEDB database.
The method displays results in a user-friendly and
informative way, both for computer-savvy and non-
expert users. We believe that BepiPred-2.0 will be a
valuable tool for the bioinformatics and immunology
community.

INTRODUCTION

B-cells are considered a core component of the adaptive im-
mune system, as they have the ability to recognize and pro-
vide long-term protection against infectious pathogens or
cancerous cells. They perform these functions by producing
antibodies, proteins that are either secreted or expressed on
the B-cell surface, and that recognize their molecular target
(called antigen) by binding to a part of it (called epitope)
in a highly selective manner. This recognition process is ex-
ploited in vaccines to provide a long-term protection toward

desired pathogens, using different methods, such as attenu-
ated and subunit vaccines.

B-cell epitopes can be divided into two groups. Linear
epitopes are formed by linear stretches of residues in the
antigen protein sequence. In contrast, discontinuous (con-
formational) epitopes are formed by residues far apart in
the antigen sequence that are brought together in space by
its folding. Even though the majority of epitopes are con-
formational, most contain one or few linear stretches (1).

Reliable B-cell epitope prediction tools are of primary im-
portance in many clinical and biotechnological applications
such as vaccine design and therapeutic antibody develop-
ment, and for our general understanding of the immune sys-
tem (2–4).

Several structure-based tools have been developed and
can be used to predict and analyse epitopes when the anti-
gen structure is known (5–9). However, structural informa-
tion is only available for a very small proportion of antigens,
and in the vast majority of cases one is left with analyzing
the primary sequence only. The accuracy of such sequence-
based predictors is generally poor, and little improvements
have been achieved over the past years. The training of cur-
rent methods is in most cases based on of peptides experi-
mentally validated to bind antibodies (10–13) and are gen-
erally associated with low performance of prediction tools
(4), which could be due to the starting data being poorly
annotated and noisy.

Here, we present BepiPred-2.0, a web server for sequence-
based B-cell epitope prediction. Unlike the BepiPred-1.0,
BepiPred-2.0 is trained only on epitope data derived from
crystal structures, which is presumed to be of higher quality
and indeed resulted in a significantly improved predictive
power when compared to other available tools (10,11).

MATERIALS AND METHODS

We describe briefly the dataset and method used for train-
ing BepiPred-2.0, and the validations we have performed.
More details on the material and methods can be found in
Supplementary Materials.
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Structural dataset

A dataset consisting of 649 antigen-antibody crystal struc-
tures was obtained from the Protein Data Bank (PDB) (14).
In each complex, we identified the antibody molecules us-
ing HMM models developed elsewhere, and for each anti-
body we define its antigens as all the non-antibody protein
chains that have at least one atom in a 4 Å radius from its
Complementarity Determining Region (CDR) atom (15).
We removed complexes in which the antigen sequence was
>70% identical to any other sequence in our dataset, thus
obtaining 160 structures. We randomly selected five struc-
tures published after 2014 as a final evaluation dataset and
used the remaining 155, split into five equally-sized parti-
tion for cross-validation, to create our training dataset. The
epitope residues were defined as those in a 4 Å radius of any
antibody residue’s heavy atom. Also, if multiple identical
antigen chains bind to the same antibody, the epitope was
defined as the union of the epitope residues on all the chains,
thus resulting in a positive dataset of 3542 residues. All 36
785 non-epitopes were defined as negatives. All the positive
and negative residues were used when evaluating the meth-
ods’ performance, but for training the negative dataset was
downsized by random sampling to the same size of the pos-
itive one (see Supplementary Materials for more details).

Training a random forest prediction model

To predict the probability that a given antigen residue is part
of an epitope, a Random Forest Regression (RF) algorithm
was trained using a 5-fold cross validation approach. Each
residue was encoded using its computed volume (16), hy-
drophobicity (17), polarity (18), together with the relative
surface accessibility (RSA) and secondary structure (SS) as
predicted by NetSurfP (19) of all the residues in a window of
size 9 centered on the residue itself. Also, the overall volume
of the antigen obtained by summing the individual volumes
of all the antigen’s residues was used, for a total of 46 vari-
ables. A rolling average of window 9 was then performed on
the RF output to obtain the final BepiPred-2.0 predictions.
More details on the parameter optimization can be found
in the Supplementary text and Supplementary Figures S1
and S2.

Evaluation measurements

We evaluated the performance for each antigen in terms of
the area under the receiver operation curve (AUC), the area
under the first 10% of the receiver operation curve normal-
ized by multiplying by 10 (AUC10%), the positive predic-
tive rate (PPR) and the true positive rate (TPR) of the top
60 predictions (20).

When comparing the performance of two models, a
paired t-test was calculated on their performances on indi-
vidual antigens. A confidence interval of 95% was used to
define a significant difference between two compared mod-
els.

Evaluation on a linear epitopes dataset

A set of known linear peptides that were tested for immune
recognition and were found to be epitopes (positive assay

results) or non-epitopes (negative assay results) were down-
loaded from the Immune Epitope Database (IEDB) (21).
Peptides shorter than five or larger than 25 amino acids
were removed, as B cell epitopes rarely are outside these
boundaries (1). Only peptides confirmed as positives in two
or more separate experiments were included in the positive
dataset, and only peptides seen as negative in two or more
separate experiments and never observed as positives in any
experiment were included in the negative dataset. This re-
sulted in 11 834 positives and 18 722 negative peptides. Each
peptide was mapped back on its original protein sequence,
and this was used to calculate the output prediction. This
dataset is available for download on the BepiPred web page
(http://www.cbs.dtu.dk/services/BepiPred/download.php).

The evaluation was only performed on the residues within
the positive and negative peptides. In this case, an AUC was
calculated only on the pooled positive and negative residues
and not per antigen sequence.

WEB INTERFACE

In order to use BepiPred-2.0 (http://www.cbs.dtu.dk/
services/BepiPred/) the user only needs the sequences of
the protein of interest in fasta format. All the predictions
are done on the fly, and in seconds to minutes, depending
mainly on the size of the input data, the user will be redi-
rected to the result page. Here, the predicted epitopes are
indicated in the input protein sequences. All the most com-
mon browsers such as Chrome, Firefox, Microsoft Edge and
Safari are supported, but some graphical features are not
available on Internet Explorer. In the following paragraphs,
the input page and the output pages will be described in
further detail. Some tips and tricks and a more detailed de-
scription of the web server can be found on BepiPred-2.0
Instructions/Help page.

Input page

The user can submit up to 50 protein sequences in fasta
format either by pasting them into the textbox or by up-
loading them as a single file. Nucleic acid sequences are
not supported and protein sequences should be longer than
10 amino acids and shorter than 6000. Example sequences
are available when clicking the button ‘Example Antigens’.
When clicking ‘Submit’ the user will be redirected to a job
queue page which is updated every 20 s. When the predic-
tions are completed, the user will be automatically redi-
rected to the output page. Optionally, the user can provide
an email address and the result page link will be emailed
when the job is completed.

Output page

The BepiPred-2.0 output page contains a navigation bar
with various tabs. The ‘Summary’ tab shows each individ-
ual sequence result in a horizontal and vertical scrollable ta-
ble. The default output format shows the BepiPred-2.0 pre-
dictions and epitope classification for each sequence. The
BepiPred-2.0 predictions are used to set the background
color of the protein sequences. All predictions greater than
a user-defined threshold (by default 0.5) are marked as ‘E’ in

http://www.cbs.dtu.dk/services/BepiPred/download.php
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Figure 1. The Summary output page in Advanced Output mode, showing BepiPred-2.0 and NetSurfP predictions for each query sequence.

the ‘Epitopes’ line above the protein sequence itself. Using
the ‘Epitope Threshold’ slider the epitope classifications can
be modified as desired. By pressing the ‘?’ button next to the
threshold slider, a plot of the expected sensitivity and speci-
ficity for each threshold value will be displayed. Hovering
the mouse over the sequences shows the prediction values of
the specific residue and hovering over the protein name will
reveal the description of the protein from the fasta header.
Clicking on the ‘Advanced Output is Off’ button will switch
to the advanced visualization mode, in which structural pre-
dictions from NetSurfP are added, as shown in Figure 1.
This allows experienced users to display detailed informa-
tion and achieve a better interpretation of the results. The
‘Log’ tab will show a log of the computations and possible
errors that have occurred and the ‘Help’ tab contains tips
and tricks and a detailed description of the output page. The
predictions can be downloaded as JSON or CSV format by
using the dropdown tab ‘Downloads’ and a short descrip-
tion of the files can be found by clicking ‘All Downloads’.

RESULTS

Here, we demonstrate the functionality of Bepipred-2.0, a
web server constructed from a large set of structurally de-
fined B cell epitopes, and show how this updated method
significantly outperform BepiPred-1.0 (10) on both struc-
tural and linear epitope validation datasets.

Cross-validation results

We used a 5-fold cross validation approach to estimate
the performance of the Bepipred-2.0 method. The dataset

consisted of epitopes derived from 165 solved structures,
in which no two antigens shared >70% sequence similar-
ity. The final RF model achieved an AUC of 0.62 and an
AUC10% of 0.121 on this test set of structural epitopes.

Figure 2 displays the Gini importance, describing the im-
portance of each feature, for each variable and cross-fold
partition (22). The Gini importance values for the 5 RF
models are highly consistent, confirming the robustness of
the proposed model. Moreover, the figure shows that be-
sides the residue type, the predicted RSA is one of the most
important features contributing to the predictive power of
our method.

On this dataset, BepiPred-2.0 outperforms the two other
tested methods, namely BepiPred-1.0 (10), LBtope (11),
both among the most used methods for linear epitope pre-
diction. Likewise the method outperforms a baseline pre-
dictor solely based on the RSA values provided by Net-
SurfP. The AUC, AUC10% and corresponding p values are
displayed in Table 1.

In many real-case scenarios, the users are only interested
in analyzing the top-scoring predictions, as they are using
the predictions to prioritize a few candidates for experi-
mental testing. To assess this case, the average positive pre-
dictive value (PPV) and true positive rate (TPR) on the 60
top-scoring residues per protein were calculated. As evident
from Figure 3, BepiPred-2.0 achieves a significantly better
PPV and a marginally better TPR when compared to the
other methods.
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Figure 2. A heat map of each feature’s impact on the 5 models generated from the 5-fold cross validation. Ranging from yellow to red, where yellow is low
impact and red high impact. Each row specifies one cross-fold RF model and the columns specify the feature. The ‘.Nx’ and ‘.Cx’ suffix specifies positions
relative to the investigated residue towards N and C-terminals, respectively.

Table 1. AUC and AUC10% for BepiPred-2.0, BepiPred-1.0, LBtope and NetsurfP from the cross-validation data

PDB ID AUC P VALUE AUC10% P VALUE

BepiPred-2.0 0.62 1 0.121 1
BepiPred-1.0 0.57 <1 × 10−6 0.093 0.02
LBtope 0.54 <1 × 10−6 0.075 <1 × 10−6

NETSURFP 0.60 0.01 0.07 <1 × 10−6

Paired t-tests with BepiPred-2.0 results were used to obtain the P values.

Figure 3. The average predictive positive value (PPV) (A) and true positive rate (TPR) (B) across all antigen sequences in test set using different number
of top scoring residues. Four different methods are evaluated: BepiPred 1.0 (red), NetSurfP (black), LBtope (gray) and BepiPred 2.0 (blue).

Independent structural epitope benchmark

Table 2 displays the performance of BepiPred-2.0 compared
to other methods, on the set of five structures in the evalua-
tion dataset. These results confirm that BepiPred-2.0 has a
higher performance than BepiPred-1.0 and LBtope. In par-
ticular, as AUC10% focuses on the highest predictions, the
gap between BepiPred-1.0 and BepiPred-2.0 for this mea-
sure underlines the higher specificity of 2.0 compared to 1.0
for high scoring residues.

Evaluation of linear epitope predictive power

To perform a fair comparison, as BepiPred-1.0 was trained
on linear epitopes, we tested the performance of Bepipred-
1.0 and Bepipred-2.0 on a dataset consisting of 11.839 posi-
tive and 18.722 negative validated peptides obtained from
the immune epitope database (IEDB, see Materials and
Methods). The results of this benchmark are reported in
Table 3, showing that also on this dataset BepiPred-2.0 out-
performs BepiPred-1.0.
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Table 2. Benchmark of the five left out antigens, comparing the performances of BepiPred-1.0, BepiPred-2.0, LBtope, BCPreds (26) and CBTope (27)

PDB ID BEPIPRED-1.0 BEPIPRED-2.0 LBTOPE BCPREDS CBTOPE

AUC AUC10% AUC AUC10% AUC AUC10% AUC AUC10% AUC AUC10%

4WFF 0.660 0.000 0.738 0.033 0.438 0.000 0.442 0.026 0.920 0.650
4XAK 0.739 0.183 0.657 0.104 0.471 0.000 0.465 0.000 0.570 0.091
4Z5R 0.327 0.000 0.576 0.038 0.515 0.019 0.539 0.110 0.300 0.002
5BVP 0.525 0.082 0.569 0.228 0.493 0.099 0.411 0.010 0.600 0.130
5C0N 0.596 0.000 0.473 0.000 0.397 0.113 0.26 0.000 0.560 0.080
Average 0.573 0.055 0.596 0.080 0.467 0.046 0.423 0.029 0.590 0.194
St.Dev. 0.157 0.081 0.100 0.091 0.046 0.055 0.103 0.046 0.220 0.261

Table 3. A comparison of BepiPred-1.0 and BepiPred-2.0 on experimental validated linear epitopes and non-epitope peptides. The AUC and AUC10%
are calculated for each antigen and averaged. The AUC and AUC10% P values are obtained with paired and non-paired t-tests, respectively

AUC AUC10%

BepiPred-1.0 0.548 0.074
bepipred-2.0 0.574 0.080
P value <1 × 10−6 <1 × 10−6

Figure 4. Lysozyme (displayed as surface, coloured from blue to red ac-
cording to BepiPred-2.0 predictions) with four unique epitope regions ob-
tained from antibodies 1BVK (purple), 1C08 (red), 1MLC (yellow) and
4TSB (green).

Case study: lysozyme epitope regions

Prototypical antibody targets, such as lysozymes have been
crystallized in complex with different antibodies binding
to different regions, whereas most proteins have only been
crystallized with a single antibody. Using lysozyme as an ex-
ample, we can see that four unique epitope regions are cur-
rently present in different solved structures (1BVK, 1C08,
1MLC, 4TSB), as shown in Figure 4, where the lysozyme
is colored according to BepiPred-2.0 predictions. It is im-
portant to note that if we evaluate the performance of our
method only on one of these four epitope at a time we get an
average AUC of 0.593 ± 0.171 and an average AUC10% of
0.127 ± 0.211. If, on the other hand, all epitope regions are
included in the evaluation, BepiPred-2.0 achieves an AUC

of 0.713 and AUC10% of 0.304. This result confirms ear-
lier findings that a possible major reason for the relative low
predictive performance of B cell epitope predictions stems
from the bias and incomplete annotation of currently avail-
able epitope benchmark data (9).

DISCUSSION

The BepiPred-2.0 web server provides a state-of-the-art B-
cell epitope sequence-based prediction. We believe that the
intuitive interface will aid researchers with limited compu-
tational knowledge to use and understand the results to
their full extent. Additionally, the advanced option allows
more experienced researchers to further interpret the out-
put based on additionally predicted structural features.

Using crystallography derived structural epitope data for
training and evaluation improved the performance signifi-
cantly, compared to prior prediction tools trained on linear
peptides tested for antibody recognition. Even when evalu-
ated on the same type of data on which BepiPred-1.0 was
trained on, BepiPred-2.0 achieved a significantly improved
performance. We believe that this is a significant finding that
will inform others on how B-cell epitope will be evaluated
in the future. Furthermore, as illustrated in the lysozyme
example, several regions can be recognised by different an-
tibodies, raising the question on how to properly define epi-
topes (23,24). A possible solution to this, currently investi-
gated by us and others (7,25), is to develop tools that can
predict the epitope regions on an antigen specific for a sin-
gle antibody or for an antibody library, thus increasing the
specificity of the predictions. Currently epitope prediction
tools can serve mostly as filters to discard regions unlikely
to be epitopes from further experimental analysis, but with
the increase in accuracy and specificity of these tools, we
believe that they will allow for precise and targeted experi-
ments.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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