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Prediction of proteasome cleavage motifs by neural networks
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of Immunology, University of Tübingen, Germany, 4Santa Fe Institute,
Santa Fe, NM and 5Division of Theoretical Biology, and Biophysics,
Los Alamos National Laboratory, Los Alamos, NM, USA

6To whom correspondence should be addressed at: Theoretical Biology and
Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht,
The Netherlands.
E-mail: C.Keşmir@bio.uu.nl

We present a predictive method that can simulate an essential
step in the antigenpresentation in highervertebrates, namely
the step involving the proteasomal degradation of poly-
peptides into fragments which have the potential to bind to
MHC Class I molecules. Proteasomal cleavage prediction
algorithms published so far were trained on data from in vitro
digestion experiments with constitutive proteasomes. As a
result, they did not take into account the characteristics of
the structurally modified proteasomes—often called immun-
oproteasomes—found in cells stimulated by γ-interferon
under physiological conditions. Our algorithm has been
trained not only on in vitro data, but also on MHC Class I
ligand data, which reflect a combination of immunoprotea-
some and constitutive proteasome specificity. This feature,
together with the use of neural networks, a non-linear classi-
fication technique, make the prediction of MHC Class I
ligand boundaries more accurate: 65% of the cleavage sites
and 85% of the non-cleavage sites are correctly determined.
Moreover, we show that the neural networks trained on the
constitutive proteasome data learns a specificity that differs
from that of the networks trained on MHC Class I ligands,
i.e. the specificity of the immunoproteasome is different than
the constitutive proteasome. The tools developed in this study
in combination with a predictor of MHC and TAP binding
capacity should give a more complete prediction of the
generation and presentation of peptides on MHC Class I
molecules. Here we demonstrate that such an approach
produces an accurate prediction of the CTL the epitopes
in HIV Nef. The method is available at www.cbs.dtu.dk/
services/NetChop/.
Keywords: artificial neural networks/cleavage site prediction/
MHC Class I epitopes/proteasome/protein degradation

Introduction

The proteasome is a multi-subunit cytoplasmic protease that
is involved both in the ubiquitin (Ub)-independent and Ub-
dependent pathways of protein degradation (Rock and
Goldberg, 1999). Protein degradation is a crucial step in
many biological processes, including the removal of abnormal
proteins, stress response, cell cycle control, cell differentiation
and metabolic adaptation. In vertebrates, protein degradation
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has also a large influence on the immune response of the host.
Cytotoxic T cells CTL recognize 8–11 amino acid long protein
fragments, presented on the surface of antigen-presenting cells.
There is increasing evidence that antigenic peptides result
from proteasomal cleavage—in particular at the C-terminal
end (Craiu et al., 1997; Stoltze et al., 1998; Paz et al., 1999;
Mo et al., 1999; Altuvia and Margalit, 2000). The N-terminus
is often generated with an extension by the proteasome and is
later trimmed by other proteases (Mo et al., 1999; Stoltze
et al., 2000).

Successful prediction of the proteasome cleavage site speci-
ficity should be valuable in the design of treatments based on
CTL responses. For example, prediction could help in the
choice of peptides for use in the treatment of CTL-mediated
autoimmune diseases, or in vaccines inducing T-cell-mediated
immunity. However, the complexity of proteasomal enzymatic
specificity makes such predictions difficult. The core of the
eukaryotic proteasome, 20S proteasome, is a complex con-
sisting of 28 protein subunits, 14 of which are unique (Groll
et al., 1997). The active sites are located in the interior of the
proteasome structure. Three catalytic activities were identified,
each associated with distinct subunits of the proteasome.
These are chymotrypsin-2 like (ChT-L), trypsin-like (T-L)
and peptidylglutamyl-peptide hydrolyzing (PGPH) activities
(Cardozo et al., 1994; Niedermann et al., 1996; Heinemeyer
et al., 1997; Cardozo and Kohanski, 1998). The stimulation
with γ-interferon replaces these three catalytically active sites
of the proteasome by alternative subunits (Driscoll et al., 1993;
Gaczynska et al., 1993). This form of the proteasome is often
referred to as the immunoproteasome. There is a continuing
debate on which fraction of the MHC Class I ligands are
generated by the immunoproteasome; some data suggests that
immunoproteasomes generate mainly the immunodominant
epitopes (Van Hall et al., 2000; Chen et al., 2001). Data-
driven methods for cleavage prediction are difficult to imple-
ment because experimental data concerning cleavage sites of
the proteasome are sparse. As far as in vitro degradation by
human constitutive proteasome is concerned, the degradations
of enolase (Toes et al., 2001) and β-casein (Emmerich et al.,
2000) are the only examples where such experiments were
performed and the generated fragments are thoroughly ana-
lyzed. Two prediction methods have been developed using
these data and some additional in vitro peptide degradation
data: PAProC (www.paproc.de) (Kuttler et al., 2000; Nussbaum
et al., 2001) and MAPPP (Holzhutter et al.,1999; Holzhutter
and Kloetzel, 2000). Since the data are limited and relate only
to degradation by the constitutive proteasome, these methods
may be of limited immunological relevance. Moreover, MAPPP
is a linear method, and it may not capture the non-linear
features of the specificity of the proteasome. Our aim is to
improve these predictions by trying two different approaches:
first, we train multi-layered neural networks, a non-linear
classification technique, using in vitro degradation data. This
technique is more powerful than PAProC, which uses a one-
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layered network to predict proteasome cleavage. Secondly, we
use naturally processed MHC Class I ligands to predict
proteasomal cleavage. Since some of these ligands are gener-
ated by immunoproteasomes and some by the constitutive
proteasome, such a method should predict the combined
specificity of both forms of proteasomes.

The neural networks trained on MHC ligands (MHC ligand
networks) were able to predict ~65% of the cleavage sites and
~85% of the non-cleavage sites in a test set composed of
MHC ligands. The networks trained on the in vitro data
(constitutive networks) showed a similar performance when
tested on the degradation of peptides with the constitutive
proteasome. However, when MHC ligand networks were tested
on the data generated by the constitutive proteasome, or when
constitutive networks were tested on the MHC Class I ligands,
the performance values were very low. We also predicted the
degradation of a large set of human proteins using both types
of networks. The MHC ligand networks generate longer
fragments than the constitutive networks. These results suggest
that the two networks learn different specificities, i.e. the
constitutive proteasome and the immunoproteasome have
different, but overlapping specificities, as also suggested by
Toes et al. (Toes et al., 2001).

The presentation of a peptide on an MHC Class I molecule
involves at least three steps: degradation by the proteasome,
transport to endoplasmic reticulum by TAP and binding to the
MHC molecule. Therefore, a combination of the degradation
prediction with TAP and MHC binding capacity should be
able to give information about the abundance of a peptide
being presented. We demonstrate that such a combined
approach gives promising results for an HIV protein.

Material and methods

MHC Class I ligand databases

The ligand sequences associated with human MHC Class
I molecules were taken from the SYFPEITHI database, a
compilation of peptides eluded from MHC molecules
(Rammensee et al., 1999), at www.uni-tuebingen.de/uni/kxi.
Only peptides longer than six amino acids were included.
Details of this data collection procedure are given elsewhere
(Altuvia and Margalit, 2000). The database contains 229
different peptides extracted from 188 human proteins and
associated with 55 human MHC Class I molecules. To prevent
biases to a specific MHC binding motif, we made sure that in
the final data set no more than 5% of the ligands were bound
to a given MHC. In the text we referred to this data set as
‘MHC ligands’. This data set is further divided into two, 85%
of the sequences are used for the training and the rest are used
for testing the performance of the networks.

To find out whether enlarging the data set size could
improve the prediction performance, we also extracted ligands
from the MHCPEP database (Brusic et al., 1998). The
MHCPEP database (wehih.wehi.edu.au/mhcpep/) contains 13
000 peptides known to bind MHC. Among these peptides, we
included only those (i) which bind to human MHC molecules,
(ii) whose flanking regions were possible to reconstruct
uniquely, (iii) that are only 8–11 amino acids long, and (iv)
that do not originate from HIV proteins (HIV proteins are
later used as a test set). This reduction resulted in 881 new
ligands, giving a total of 1110 MHC Class I ligands to work
on. This data set is referred to in the text as ‘Enlarged
MHC ligands’.
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The network trained on the enlarged MHC ligands set is
used to predict the cleavage of C-termini of HIV epitopes.
The epitopes were compiled from the HIV Immunology
Database (hiv-web.lanl.gov), which is the most comprehensive
HIV epitope database for reference strains such as HXB2. The
set contains 168 cleavage sites from five HIV proteins (RT,
gp160, p17, p24, Nef).

To classify amino acids within a protein sequence into
cleavage and non-cleavage sites one needs examples of both
types of sites. Neither the MHCPEP nor the SYFPEITHI
database contain negative examples, i.e. non-cleavage sites.
We used several methods in order to create negative examples.
The first method was to label sites within MHC ligands as
non-cleavage sites. Our rationale was that the positions within
an MHC ligand can only be minor cleavage sites, otherwise
the peptide would not be presented on the MHC in the first
place. Further, we identified the negative sites that small
networks, e.g. networks with only one hidden neuron cannot
learn (the large networks can learn all the sites within MHC
ligands as negative sites). These sites seem to be different
from the other sites within MHC ligands, and thus, they are
likely to be potential cleavage sites. These sites were extracted
from the training, resulting in a more consistent and ‘clean’
set of non-cleavage sites. The second method relies on the
fact that cleavage site frequency is at the most 24% (Nussbaum
et al., 1998) per enolase molecule. Thus, labeling random sites
as non-cleaved is erroneous in maximally 24% of the cases.
Random sequences with amino acid frequencies analogous to
frequencies in GenBank were generated and used as non-
cleavage site examples. The performance of the networks
changed only slightly when different negative sites were used.
The results reported here are therefore based on the first
method in which any position within an epitope is considered
as a non-cleavage site.

Experimental degradation data
For the prediction of cleavage by the constitutive proteasome,
we used data on digests of yeast enolase (Toes et al., 2001)
and bovine β-casein (Emmerich et al., 2000) using the human
20S proteasome. Toes et al. (Toes et al., 2001) extracted the
proteasome from human B cells lacking immuno-subunits.
This proteasome created 109 fragments from enolase, using
136 distinct cleavage sites. The mean fragment length was 7.4
amino acids. When β-casein was digested using the human
20S proteasome, 63 fragments were produced (48 distinct
cleavage sites), having an average length of 18.3 amino acids
and a standard deviation of 9.4 amino acids. During training
of the neural networks the residues in enolase and β-casein
are divided into two groups: the cleavage sites and the non-
cleavage sites. The residues on the N-terminus of a verified
cleavage (i.e. P1 residue) are assigned as cleavage sites, and
all the other residues are assigned as non-cleavage sites.

Sequence logo
We use the Kullback and Leibler information measure to
quantify the information content in the cleavage sites and the
flanking regions. The purpose of this method is to quantify the
contrast between a background distribution and the observed
distribution for a given event. Sequence windows centered
around the cleavage sites were aligned and the information
content was calculated for each position i as:
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where p i
L is the probability that the amino acid L occurs at

position i in a cleavage site window, q i
L is the probability that

a particular amino acid L occurs in a non-cleaved window
(background distribution). This information content, expressed
in bits/amino acid, was visualized using sequence logos (Schne-
ider and Stephens, 1990).

The neural network algorithm
For this study a standard artificial feed-forward neural network
model with one hidden layer of units was used. A neural
network uses a network of neurons, where each neuron has
multiple inputs and is connected to other neurons, and a single
output which produces a non-linear response based on the
weighted inputs from these neurons. Each sequence window
presenting a specific feature (e.g. in our case either a cleavage
window if a cleavage occurs in the middle position or a non-
cleavage window) is presented repeatedly to such a network.
The weights of the network are initialized randomly. After
each iteration of data presentation these weights are adjusted
using a standard back-propagation (a gradient descent type)
algorithm. The details of this system are given in several other
articles (Brunak et al., 1991; Baldi et al., 1996) and in books
(Hertz et al., 1991; Baldi and Brunak, 2001).

Each amino acid is represented using 21 binary positions
(conventional sparse encoding: Qian and Sejnowski, 1988;
Hertz et al., 1991) in 21 input neurons. For example, alanine
is represented as 1000000000000000000000 and cysteine as
01000000000000000000, and so on. The last bit is used for
handling incomplete windows in the initial and terminal parts
of proteins.

We used sequence windows of size 3 up to 29 amino acids.
The central amino acid was designated as either a cleavage or
a non-cleavage site, and the actual cleavage site was located
between the central residue and the following (C-terminal)
residue. For example, the cleavage site L251 refers to the
cleavage between leucine 251 and residue 252. The same
number of flanking residues are used on both sites of the
central residue, e.g. a window of five amino acids corresponds
to a central residue and two amino acids on each site
(P3P2P1P1�P2� residues for a cleavage site; Berger and
Schechter, 1970). For each window configuration, the networks
made one prediction for the middle position, assigning the
residue to two categories: a cleavage site or a non-cleavage
site. Neural networks with 0 to 29 hidden neurons were
evaluated for prediction performance. The output of the net-
works was a score between 0.0 and 1.0. A cleavage was
assigned if the network output was larger than a threshold,
which is traditionally 0.5. The results reported in this study
were obtained using a threshold value of 0.7, to increase the
reliability of the predicted cleavage sites. The absolute value
of the threshold did not change the correlation coefficients
(see below) presented here, but it influences the specificity
and the sensitivity. The details of the training procedure
can be found elsewhere (Brunak et al., 1991; Brunak and
Engelbrecht, 1996).

Evaluation of network performance
We evaluated the performance of different neural networks by
dividing the entire data sets into a training data set and a test
data set. The performance was evaluated using a coefficient
of correlation (Matthews, 1975) given by:

PxNx � NfxPfx
C � (2)√(Nx � Nfx)(Nx � Px)(Px � Nfx)(Px � Pfx)
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where Px is the number of true positives (experimentally
verified cleavage sites which are also predicted as cleavage
sites), Nx the number of true negatives (experimentally verified
non-cleavage sites, predicted as non-cleavage sites), Pfx the
number of false positives (experimentally verified non-cleavage
sites, predicted as cleavage sites) and Nfx the number of false
negatives (experimentally verified cleavage sites, predicted as
non-cleavage sites). Additional performance measurements
used in this paper are defined as:

Px NxSensitivity � , Specificity � ,
(Px � Nfx) (Nx � Pfx)

Px NxPPV � , NPV � ,
(Px � Pfx) (Nx � Nfx)

where PPV and NPV stand for positive prediction value and
negative prediction value, respectively.

Results
Cleavage inhibiting and promoting sequence motifs
The data used in this paper stem from two different sources.
The first set (MHC ligands) comprises 458 cleavage sites
determined by MHC Class I ligands of 188 human proteins
(Altuvia and Margalit, 2000). The distribution of amino acid
residues around the cleavage site for this data set is shown in
logo form in Figure 1. The MHC ligand region is shown as
dotted positions. Note that the C-terminus cleavage site [i.e.
the P1 position, cleavage nomenclature according to Berger
and Schechter (Berger and Schechter, 1970)] is included in
the MHC ligand. In sequence logos, amino acid symbols are
scaled according to their frequencies of occurrence relative to
the background distribution. That is, if an amino acid is over-
represented, it will get a large height. On the other hand, if it
is under-represented, it will also get a large height, but will
be given a negative value so that it can be visualized differently,
e.g. as an upside down letter. If it occurs at nearly the same
frequency as the background distribution, it will have a very
small height. In generating this logo we used the amino acid
frequencies within the MHC ligand (excluding the last position)
to find the background distribution, i.e. the distribution of the
amino acids that are not cleaved.

The information content is much higher around the C-
terminus than N-terminus (Figure 1), as previously reported
by Altuvia and Margalit (Altuvia and Margalit, 2000). This
can be due to the involvement of other proteolytic processes
on generating N-terminus on MHC Class I ligands (Mo et al.,
1999; Stoltze et al., 2000). When we enlarged this MHC
ligand data set, the basic properties of the logo given in Figure
1 did not change (data not shown).

The second data set contains in vitro degradation data by
human 20S constitutive proteasome for two proteins: enolase
(Toes et al., 2001) and β-casein (Emmerich et al., 2000). A
sequence logo based on 184 distinct sites from these two
proteins is shown in Figure 2. Here the most significant
position is the P1 residue, followed by P2�, P2 and P3. The
dominance of the hydrophobic residues (L, V, A) together with
the acidic ones (D, E) at these positions is clear, whereas P
seems to inhibit cleavage. Comparison of Figures 1 and 2
suggests that the nature of the in vitro degradation data is
different from MHC Class I ligands. This can be due to the
involvement of the immunoproteasome in generation of MHC
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Fig. 1. Sequence logo (as described in Materials and methods) of N- and C-terminal cleavage sites for the MHC ligand database (229 unique sites for both
termini). Cleavage nomenclature according to Berger and Schechter (Berger and Schechter, 1970). The level of conservation at each position is computed as
the Kullback–Leibler information content. The dotted positions correspond to the MHC Class I ligand. The information content around the C-terminus is
much higher than that around the N-terminus. Note that the P1 position for C-termini is the last position of the MHC Class I ligand. Amino acids are color
coded according to their physicochemical characteristics. Neutral and polar, green; basic, blue; acidic, red; neutral and hydrophobic, black. Upside-down
letters show the amino acids that are under-represented compared to the background distribution.

Fig. 2. Sequence logo generated using in vitro data on digestion of enolase and β-casein by human 20S constitutive proteasome. 184 distinct cleavage sites
were used to create this logo. Color code and the method as in Figure 1.

Class I ligands. However, we did not analyze all the peptides
generated by the immunoproteasome; we analyzed only the
peptides that bind to MHC molecules. Therefore, this result
has to be interpreted with caution.

Sequence features used for discrimination by the network
can be extracted by inspecting the weights of individual
neurons. In order to enlarge our analysis of cleavage promoting
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and inhibiting motifs, we analyzed the weights of a linear
network trained on the constitutive proteasome data. This
network had a seven-residue window and one hidden neuron.
In the P1 position large hydrophobic residues (F, L and polar
Y) promote cleavage prediction by the network. Proline at P1
and P2 is strictly cleavage inhibiting, whereas at P4 it is
cleavage promoting as suggested earlier (Nussbaum et al.,
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Table I. Cleavage motifs of human constitutive proteasomes

Position Positive effect Negative effect
on cleavage on cleavage

P1 F, L, Y P, G, T, N, K
P2 Q, Y, V P, D
P3 V G, Q
P4 P, T D, K
P2� H K, S, R, E, P

Cleavage characteristics of human constitutive proteasomes extracted from
the analysis of the weights of the artificial neural network. This is a network
with one hidden neuron trained on degradation of enolase by human
constitutive proteasome and it uses a seven-residue window, giving three-
residue flanking regions on each site of the cleavage site.

1998; Shimbara et al., 1998). Glycine seems to be cleavage
inhibiting when present at positions P1 and P3. The P2�
position may have as much influence as P2; charged residues
at P2�, e.g. K, R or E, are cleavage inhibiting. In the P1�
position both experimental results and theoretical studies
suggest a preference for small, β-turn promoting amino acids
for cleavage (Altuvia and Margalit, 2000; Kuttler et al.,
2000); however, in our analysis we could not identify this
feature. For M, W and C, it was not possible to draw any
conclusions since these amino acids have a very low frequency
in enolase and β-casein. These results are summarized in Table
I. Interestingly, these characteristics are very similar to the ones
suggested earlier for the yeast proteasome (Kuttler et al., 2000).

Predictive performance of the neural networks
Two networks were trained using the MHC Class I ligands
data set: one for the N-termini cleavage site (and its flanking
region) and one for the C-termini cleavage site (and its flanking
region). The performance of the N-termini network was lower
in all the test sets, this is why in Table II, we report only the
performance of the C-termini network on the test set. The
method is able to predict most of the assigned non-cleavage
sites, but has a somewhat poorer performance on the assigned
cleavage sites. The final network that was used to obtain these
results was one with a 19-residue window and 29 hidden
neurons. The networks with small windows (e.g. one with a
seven-residue window) have a lower predictive performance,
although the difference is not very large. Interestingly, the
inclusion of the constitutive proteasome data in our training
increased the performance of the networks (Table II, second
row). This implies that MHC Class I ligands are not produced
solely by the immunoproteasome, and that the use of degrada-
tion data from the constitutive proteasome can improve the
prediction of these ligands. In an attempt to improve our
predictions still further we enlarged the training set of MHC
Class I ligands 3-fold by including ligands from the MHCPEP
database as well as the ligands used for measuring the
performance of the above networks (see Materials and
methods). The networks trained on this enlarged data set were
used to predict the exact C-termini of MHC Class I epitopes
in HIV proteins (Table II, third row). On this data set these
networks performed much better than the other methods
available (i.e. PAProC and MAPPP mentioned above have a
correlation coefficient of ~0.1 on this data set, unpublished
results).

For the constitutive proteasome data we measured the
performance of the trained networks on five peptides discussed
in the literature, which are degraded by human proteasome
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(Table III). A network trained on the degradation data from
enolase and casein can predict 68% of the experimentally
verified cleavage sites (Table II). To make the comparison of
our results with earlier studies, and to give an idea of what
errors the network makes, we printed the full cleavage map
of these peptides in Table III. For these peptides our network
performed just as well as the best predictor of proteasome
cleavage published so far (Kuttler et al., 2000). Note that for
the peptide data, networks having a small window size (e.g.
seven residues), perform best, whereas the large window
networks predict MHC Class I ligands best. The networks
trained on in vitro data predict many cleavage sites within
MHC Class I ligands, i.e. these networks predict that many of
the MHC ligands are unlikely to remain intact (data not
shown). This is partially because the predicted cleavage
frequency is higher when in vitro degradation is used as a
training set. Nevertheless, this observation suggests that the
constitutive proteasome might generate fewer MHC Class I
ligands than the immunoproteasome.

When predicting the proteasome specificity, one should
obviously take the ‘cleavage frequency (cleavage strength)’
into account. One way of incorporating this additional measure
is to use the relative abundance of the specific cleavage, which
is available as the initial yield during Edman degradation [for
enolase, see Toes et al. (Toes et al., 2001) and for β-casein
Emmerich et al. (Emmerich et al., 2000)]. Such an approach
increases the sensitivity of the constitutive networks, although
not significantly (data not shown). This suggests that the
prediction performance can be improved as more quantitative
data concerning cleavage sites become available.

Networks trained on MHC Class I ligands predict longer
fragment length

The predictive ability of the networks trained on MHC Class
I ligands can be evaluated further by comparing the predicted
fragment length distribution with known data. We estimated
the fragment distribution for 4037 human proteins from
SWISSPROT (version 38) (Bairoch and Apweiler, 2000). The
calculation was based on the cleavage prediction by the
network trained on MHC Class I ligands. Results are shown
in Figure 3A. We used two approaches to estimate the fragment
length distribution. First, we assumed that fragments were not
overlapping, i.e. the probability that each predicted site will
occur is one. Then, the fragment length distribution is the
same as the distribution of the distance between two adjacent
predicted cleavage sites. This is plotted as the solid bars in
Figure 3A. However, it is known that the cleavage process is
highly stochastic [overlapping fragments are very often found
in the experimental systems (Nussbaum et al., 1998)]. Thus,
each predicted cleavage site will be used with a certain
probability by the proteasome and some fragments may overlap.
To include this effect we used the activity of output neurons
(which varies between 0 and 1) as the probability that a
cleavage will actually occur at a predicted site. In this way
one can repeat say 1000 independent cleavage ‘simulations’
allowing each cleavage to occur with a probability based on
neural network predictions. The fragment distribution obtained
after 1000 independent simulated cleavages of human proteins
are shown as dotted bars in Figure 3A. When each cleavage
occurs only with a certain probability, the frequency of longer
peptides is increased.

Kisselev et al. (Kisselev et al., 1999) analyzed the degrada-
tion of three proteins, ovalbumin, casein and insulin-like
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Table II. Predictive performance of neural networks

Trained on Tested on Sensitivity (%) Specificity (%) PPV (%) NPV (%) Correlation
coefficient

MHC ligands MHC ligands 80 88 44 97 0.53
MHC ligands and 20S MHC ligands 72 92 53 96 0.56
Enlarged MHC ligands HIV proteins 66 74 50 85 0.37
20S Peptides 68 84 70 83 0.53

Values in the table have been rounded to the nearest integer. PPV, positive prediction value reflects the reliability of the positively predicted sites; NPV,
negative prediction value reflects the reliability of the negatively predicted sites. For the definition of performance measurements see Materials and methods.
In all cases the train and test data sets are independent, i.e. none of the sequences used for the training is included in the test set. The compilation of the data
sets are explained in Materials and Methods. 20S stands for the degradation data available by the constitutive proteasome (enolase and β-casein). The peptides
are shown in Table III.

Table III. Peptides used for testing the performance of the constitutive proteasome cleavage prediction

Protein name Data source Cleavage map Px Nfx Pfxı

pp89 Kuckelkorn et al. (1995) RLMY⇓D⇓MY⇓PHFMPTNL⇓GPSE⇓K⇓RVWMS –
NN RLMY⇓D⇓M⇓Y⇓PHF⇓M⇓PTNL⇓GPSEKR⇓VWMS 4 2 4

OVA Niedermann et al. (1997) YVSGLEQL⇓E⇓SIINF⇓E⇓KL⇓TE⇓WTS –
NN YVSGL⇓EQL⇓ESIINF⇓EKLT⇓E⇓WTS 3 3 2

OVA Niedermann et al. (1997) ALAM⇓VY⇓L⇓G⇓A⇓KDSTRTQ⇓INKVVR⇓F⇓DKL⇓PGF⇓GD⇓SIE –
NN ALAM⇓V⇓Y⇓L⇓GA⇓KD⇓STRTQ⇓INKVV⇓RFDKL⇓PGF⇓GD⇓SIE 8 3 3

Nef Lucchiari-Hartz et al. (2000) DWQN⇓Y⇓TPGPGVR⇓Y⇓PL⇓TF⇓GW⇓CY⇓KL⇓V⇓PVEPDK –
NN DWQN⇓Y⇓TPGPGV⇓R⇓Y⇓PLTF⇓GW⇓CY⇓KLV⇓PVE⇓PDK 8 2 2

RU1 Morel et al. (2000) TGSTAV⇓PYGSF⇓KH⇓V⇓DT⇓RLQ –
NN TGSTAV⇓PYGSF⇓KHV⇓DTRLQ 3 2 –

The predictions (given in the rows where data source is indicated as NN) are made by a network (seven-residue window and four hidden neurons), trained on
enolase and β-casein data. The references in the table refer to the articles where we collected the data. We included only studies using the human proteasome.
The first and the last three residues of each sequence cannot be predicted, since the network needs three-residue flanking. These positions are shown in italics.
The threshold used for predictions was 0.5. Px is true positives, Nfx is false negatives (missed cleavage sites), Pfx is false positives (wrongly predicted
cleavage sites). The arrows indicate the predicted or experimentally verified cleavage sites. Cleavage sites that were found very rarely are not included in the
table.

growth factor, with mammalian 26S proteasome in vitro and
found that (i) 10–15% of peptide bonds are cleaved, (ii) only
15% of peptide products are 8 to 9 amino acids long, (iii)
mean peptide length is less than eight amino acids (7.6), and
(iv) two thirds of peptides generated are shorter than eight
residues. Using the results given in Figure 3A, we found that,
in total, 11% of all the peptide bonds were cleaved. 8 to 9Mer
peptides made up 13.6% (16.4% when we include chance of
overlap, see above) of all the peptides generated. The mean
length was 8.9 amino acids (10.2 for overlapping peptides),
which is larger than the mean length reported by Kisselev
et al. (Kisselev et al., 1999) but in agreement with the data
of Toes et al. (Toes et al., 2001) for the immunoproteasome.
Moreover, we found that 40% of peptides were shorter than
eight residues; in other words, the networks trained on MHC
ligands tended to predict longer fragments (Figure 3B). When
we used the networks trained on the constitutive proteasome
data (in vitro degradation data), the fragment distribution
became closer to the one reported by Kisselev et al. (Kisselev
et al., 1999) (Figure 3B). Since our results are averaged over
more than 4000 proteins, the agreement between the predictions
and the experimental data is striking.

The main difference between two training sets, MHC Class
I ligands and in vitro degradation using the constitutive
proteasome, is the involvement of the immunoproteasome in
the former set. Thus, the above results suggest that the
specificity of the immunoproteasome is different from that of
the constitutive proteasome. This has been suggested before
(Cardozo and Kohanski, 1998; Toes et al., 2001; Van den
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Eynde and Morel, 2001), e.g. the immunoproteasome cleaves
more often after hydrophobic amino acid residues, but less
often after acidic and aromatic residues (Cardozo and Kohanski,
1998). Moreover, our results suggest that longer peptides can
be generated by the immunoproteasome (Figure 3B). This
result is in agreement with Toes et al. (Toes et al., 2001)
data, where the average fragment length generated by the
immunoproteasome is 8.6 amino acids, and it is 7.4 amino
acids for the constitutive proteasome.

Note that the networks are trained only on the specificity
of the cleavage sites, not on the optimal length of the fragments
generated.
Combination of proteasome cleavage prediction and data on
TAP and MHC binding on HIV Nef epitopes
The generation and presentation of peptides on MHC Class I
molecules, the availability of responsive T cells, and immuno-
regulatory effects can all have an influence on whether immune
responses are evoked against a particular epitope (Yewdell and
Bennink, 1999). As a result, typically one, or a few, potential
epitopes elicit a strong CTL response upon immunization with
complete antigens (Yewdell and Bennink, 1999). For example,
among 51 potential MHC binding peptides in the nucleoprotein
and glycoprotein of lymphocytic choriomeningitis virus, only
three generate a strong primary immune response (Van der
Most et al., 1998). A possible explanation for this is that
although some of the peptides have a high binding capacity
to MHC, they are very unlikely to be generated by the
proteasome or transported by TAP into the endoplasmic
reticulum and thus they do not evoke a CTL response.
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Fig. 3. The fragment length distribution of more than 4000 human proteins from SwissProt (version 38) according to the predicted degradation by the
proteasome. To generate this graph we used the network trained on C-terminal cleavage of MHC Class I ligands. (A) Solid lines give the estimated fragment
distribution based on the distance between two adjacent predicted cleavage sites, i.e. if we assume that every predicted cleavage site is realized. If the
probability of a predicted cleavage site to occur is included (dotted lines, see text for details), it is possible to obtain longer peptides. (B) Comparison of the
predicted fragment distribution with experimental data of Kisselev et al. (Kisselev et al., 1999) (dashed lines, generated only by the degradation of three
proteins). The solid line shows the predicted fragment length of the human proteins by the network trained on the MHC Class I ligands. The dotted line
shows the same for the network trained on the constitutive proteasome data. The predictions are made for 4037 human proteins.

Lucchiari-Hartz et al. (Lucchiari-Hartz et al., 2000) tested
this hypothesis by measuring TAP and MHC affinities of five
epitopes from the HIV Nef protein (Table IV). We extended
their analysis by calculating the probability of a peptide being
generated, P, by the proteasome. The generation probability
of a peptide is determined by two events. First, it has to be
cleaved precisely on the C-terminus, and secondly, the rest of
the peptide has to remain intact after proteasomal degradation,
at least to an extent that allows enough intact peptide to be
loaded onto MHC Class I molecule. For each of the peptides
discussed in Lucchiari-Hartz et al. (Lucchiari-Hartz et al.,
2000), we calculated Pc, the probability that the C-terminus
would be generated correctly, and Pcon, the probability of not
having a major cleavage within the peptide. If we assume that
the output of the network is a good measure of the cleavage
probability, then Pcon � ΠOi � 0.7(1 – Oi) and Pc � ON, where
N is the length of the peptide and Oi is the output of the
network for position i. In defining Pcon we took into account
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only the sites where a cleavage was predicted, i.e. Oi � 0.7.
The threshold of 0.7 is used for all the results reported in this
study. As there is some evidence that the N-terminus is
generated by different proteolytic processes (Craiu et al., 1997;
Stoltze et al., 1998; Mo et al., 1999), we did not take into
account the probability of generating the N-terminus correctly.
The probability of an epitope being generated, P, is thus
defined as P � Pc � Pcon. Finally, to combine the effects of
all three steps, i.e. degradation, transportation and MHC Class
I binding, we define the quality of presentation of a peptide
as Q � P / (ATAP � AMHC) where ATAP and AMHC are binding
affinities to TAP and MHC Class I molecules, respectively.
Please note that higher affinity is reflected in terms of lower
ATAP and AMHC values. In other words, peptides with a high
probability of being generated and with a high affinity to both
TAP and MHC Class I molecules, should get a large Q value.

The results are given in Table IV. The observed number of
MHC Class I ligands found in the cell surface and the quality
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Table IV. Qualification of antigenicity for HIV Nef protein

Peptide Sequence AMHC P ATAP Q (�108) No. of MHC Class I
ligands per cell

Nef136–145 PLTFGWCYKL 295 0.0075 49 50 85
Nef136–146 PLTFGWCYKLV 75 0.001 17 90 125
Nef128–135 TPGPGVRY 30 0.7 160 14583 3600
Nef128–137 TPGPGVRYPL 25 0.0075 195 154 840
Nef135–143 YPLTFGWCY 18 0.057 304 1020 80

Epitopes from HIV-Nef protein were tested for their affinity to TAP and MHC Class I (Lucchiari-Hartz et al., 2000). The first two epitopes are HLA-A2
restricted, whereas the others are HLA-B7 restricted. The binding affinity for TAP, A TAP, and MHC Class I, AMHC, and number of MHC Class I ligands per
cell values given in this table are experimental values and are adopted from Lucchiari-Hartz et al. (Lucchiari-Hartz et al., 2000). P is calculated on the basis
of our predictions and is a measure of the combined probability of cleavage at the C-terminus and the peptide being conserved (see text for exact definition).
The quality of presentation, Q, is defined as Q � P / (ATAP � AMHC). Higher values of Q indicate a larger chance of being presented. There is a good
correlation between the Q value and the observed number of MHC Class I ligands per cell.

parameter Q correlate very well for the first three epitopes,
whereas for the last two epitopes the correlation is weaker.
The above formula used to estimate the probability of a peptide
being preserved by the proteasome, Pcon, is rather simple,
which might explain why the correlation for the last two
epitopes is not perfect. At the moment we are working on
different ways of defining Pcon.

Taken together, our data indicate that neural network predic-
tion of proteasomal cleavages, in combination with data on
MHC Class I binding and TAP transport efficiency, has the
power to accelerate the identification of CTL epitopes.

Discussion
Obtaining a better insight into the specificity of the proteasome
is an important step in our understanding of many cellular
processes, ranging from metabolic adaptation to the regulation
of immune responses. We have presented a computational
approach whereby the problem can be tackled in two ways: The
first way is to predict the specificity of the immunoproteasome
partially by using MHC ligand data (which contains only a
subset of true fragments created by the immunoproteasome,
see below). The second way is to predict the specificity of the
constitutive proteasome. These two predictions may, when
combined, lead to a more reliable prediction of MHC Class I
ligands. Although our specific performance on the available
test set sequences can be improved (Table II), the predictions
we made using a large human protein database are in agreement
with the available experimental data (Figure 3). Moreover,
we showed that our predictions for both degradation with
constitutive proteasome (Table III) and generation of MHC
Class I ligands from viral proteins (Table IV) are in good
agreement with experimental findings. Another important result
of our analysis is that the networks trained on the MHC Class
I ligands and on the constitutive proteasome degradation
data learn different, but overlapping specificities. Since the
immunoproteasomes are involved in generation of MHC
ligands, this result suggests that the specificities of the immuno-
proteasome and the constitutive proteasome are different, but
nevertheless overlap, as was also recently shown by Toes et al.
(Toes et al., 2001). It has been suggested earlier that the
flanking regions might play an important role in determining
the cleavage site (Del Val et al., 1991; Cardozo et al., 1994;
Nussbaum et al., 1998; Theobald et al., 1998; Altuvia and
Margalit, 2000). Looking at our network architecture, we also
suggest that long flanking regions (up to nine amino acids)
can influence the cleavage, as the best test performance is
obtained with networks having large windows. Finally, we
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showed that a combination of our prediction methods with TAP
and MHC affinity yields a good estimate of how abundantly a
peptide can be presented by an antigen-presenting cell (see
results for HIV-Nef in Table IV).

Some problems arise with regard to the use of the MHC
ligand database to predict the specificity of the proteasome.
For instance, many N-termini of MHC ligands seem to be
generated by non-proteasomal pathways (Craiu et al., 1997;
Stoltze et al., 1998; Mo et al., 1999; Paz et al., 1999; Zhou
et al., 1999; Stoltze et al., 2000). Even for the C-termini, it is
not possible to rule out the possibility that some exopeptidases
might be involved in the post-trimming of precursor peptides
generated by proteasomes. Furthermore, there is no direct
evidence that MHC ligands are made only by the immuno-
proteasomes or by the constitutive proteasome. Therefore, a
prediction scheme based on MHC ligands will model the
combined, systemic specificity of the degradation. Moreover,
the C-termini of MHC Class I ligands rarely contain any acidic
and basic amino acids. However, the proteasome has been
shown to have the enzymatic activities which allow cleavage
of peptide bonds to occur immediately after basic and acidic
amino acids (Nussbaum et al., 1998; Toes et al., 2001).
Therefore, the use of the MHC ligand database would induce
a bias towards other enzymatic activities other than trypsin-
like and post-acidic (PGPH) activities. Despite all this, our
results regarding the prediction of HIV-Nef epitopes demon-
strate that such an approach can lead to good qualitative
epitope prediction.

In an earlier theoretical study it was suggested that some
side-chain properties of the flanking amino acid residues
can be cleavage-determining (Holzhutter et al., 1999). We
elaborated this idea by testing 450 side-chain properties avail-
able in the AAIndex database (Nakai et al., 1988). We used
the classical Kolmogorov–Smirnoff (Kolmogorov, 1941) test
to rank the side-chain properties according to their ability to
discriminate a cleavage site from a non-cleavage site. In
addition to the free energy of transfer and the volume [as
suggested by Holzhutter et al. (Holzhutter et al., 1999)], several
measures of hydrophobicity and other side-chain properties,
related to the protein secondary structure, turned out to be
possible candidates for discriminating cleavage sites from non-
cleavage sites. The majority of the discriminating properties
were found for the P1 residue, although some positions like
P2, P1� and P2� are also important. We used up to 30 of the
most significant side-chain properties (common to both MHC
ligands and constitutive data) with or without the amino acid
sequence for the prediction of cleavage sites. Both of these
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approaches resulted in a poorer performance than reported in
Table II.

In protein degradation, ubiquitination probably plays the
largest role (Yewdell et al., 1999). However, once ubiqutinated,
the number of predicted cleavage sites within a protein can be
used as a measure of resistance to degradation. Interest has
focused on the degradation of prion protein and its mutants
for many years, as this protein is associated with many
neurodegenerative diseases (Kretzschmar, 1999). The human
prion protein, PrP, and especially its pathogenesis-associated
mutant, PrP145 (a mutant having a stop codon at position
145), are predicted to be easily degraded by our networks.
This result together with the experimental evidence (Zanusso
et al., 1999) suggest that there is hardly any correlation
between the degree of degradability and pathogenicity of the
prion protein. Further, our networks do not predict that a
polyalanine tract will be cleaved by the proteasome. This is
an interesting result, since expansions of polyalanine tracts
might cause diseases associated with malformation, e.g.
synpolyactyly (Goodman et al., 1997), cleidocranial dysplasia
(Mundlos et al., 1997) and oculaopharangeal muscular dys-
trophy (Brais et al., 1998). Another class of triplet repeat
disorders is associated with polyglutamine tracts (Koshy and
Zoghbi, 1997). We found that these tracts are also resistant to
degradation by proteasome.

The results reported in this study show that combination of
proteasomal cleavage prediction with data on TAP and MHC
affinity yields to a good estimate of epitopes in proteins (see
results for HIV-Nef in Table IV). As this combination efficiently
identifies CTL epitopes, the combined prediction of these steps
in antigen processing would probably also make the search
for CTL epitopes quicker. This is very promising for future
epitope prediction tools. The methods have been made publicly
available at www.cbs.dtu.dk/services/NetChop. Users are
encouraged to feedback any experimental confirmation or
falsification of the predictions. Any new information regarding
verified cleavage sites will also be most welcome. Both types
of feedback can be used to retrain the networks to increase
performance.
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