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We are able to make reliable predictions of the efficiency with which peptides of arbitrary lengths will be transported by TAP. The
pressure exerted by TAP on Ag presentation thus can be assessed by checking to what extent MHC class I (MHC-I)-presented
epitopes can be discriminated from random peptides on the basis of predicted TAP transport efficiencies alone. Best discrimina-
tions were obtained when N-terminally prolonged epitope precursor peptides were included and the contribution of the N-terminal
residues to the score were down-weighted in comparison with the contribution of the C terminus. We provide evidence that two
factors may account for this N-terminal down-weighting: 1) the uncertainty as to which precursors are used in vivo and 2) the
coevolution in the C-terminal sequence specificities of TAP and other agents in the pathway, which may vary among the various
MHC-I alleles. Combining predictions of MHC-I binding affinities with predictions of TAP transport efficiency led to an improved
identification of epitopes, which was not the case when predictions of MHC-I binding affinities were combined with predictions of
C-terminal cleavages made by the proteasome. The Journal of Immunology, 2003, 171: 1741–1749.

C ytotoxic T cells of the vertebrate immune system are able
to discriminate between normal and abnormal cells (pos-
sessing an altered gene expression or containing viral

proteins) on the basis of the repertoire of peptides (T cell epitopes)
presented on the cell surface by MHC class I (MHC-I).2 Before
being presented as a T cell epitope, a peptide has to pass a number
of consecutive filtering processes involved in the MHC-I presen-
tation pathway (reviewed in Ref. 1). Most of the MHC-I-presented
peptides, or longer peptide precursors of them, are cut out from
intracellular proteins by proteasomes. Peptides generated by the
proteasome have to escape from proteolytic attack of various cy-
tosolic proteases before they are transported into the endoplasmic
reticulum (ER) by TAP. Within the ER, peptides may undergo
N-terminal trimming, whereas their C terminus is kept intact (2, 3).
The ER aminopeptidase associated with Ag processing responsible
for this trimming was recently identified (4–6). Peptides with cor-
rect size and proper amino acid sequence motifs bind to MHC-I,
and the receptor-peptide complex is transferred to the cell surface.
Peptides in the ER with less efficient MHC-I binding are either
degraded there or exported for rapid degradation in the cytosol.

It is a challenging goal to provide computational methods that
allow predicting T cell epitopes from the large pool of peptides
with 8–11 residues that in principle can be derived from intracel-
lular proteins. Such prediction tools would be useful for several
immunological applications, including the intelligent design of
peptide vaccines. The first prediction tools developed for individ-

ual steps of the MHC-I presentation pathway were established for
MHC-I binding (7), which appears to be the most selective step.
Moreover, several algorithms to predict proteasomal cleavages ex-
ist (8–10).

The experimental basis for previous attempts to predict TAP
transports were the in vitro affinity assays (11, 12), in which the
affinity has been shown to correspond closely with the transport
rate of TAP (12). Thus, in this study we took the correspondence
of TAP transport and affinity to be exact, allowing us to equate
predictions of TAP affinity with predictions of TAP transport. Pre-
dictions of TAP affinity (13) were limited to 9-mers and exhibited
large allele-specific differences in their ability to discriminate pre-
sented epitopes from random 9-mers. This has led to the conclu-
sion that either MHC-I alleles are loaded by different degrees of
TAP-independent transport (14) or varying amounts of epitopes
are transported as N-terminal prolonged precursors (15). The sec-
ond reasoning has been shown to be true for several epitopes (15–
17) and receives further support by the identification of the ami-
nopeptidase responsible for the N-terminal trimming of precursors
in the ER.

To extend the TAP affinity predictions to longer peptides, we
introduce a new scoring method using only the C terminus and the
tree N-terminal residues of a peptide. The scores at these positions
are taken from scoring matrices measured for 9-mer peptides. The
validity of this procedure is demonstrated for a set of longer pep-
tides. We then examine the possible in vivo selective effect of TAP
by comparing the predicted TAP transport efficiency of known
human MHC-I epitopes with that of random 9-mers encoded by
the same set of host proteins. Because the actual precursors gen-
erated in vivo are only known in a few cases, the effective TAP
transport rate of a peptide is estimated by taking the average score
of all of its potential N-terminal precursors up to a maximal length
L. This provides a significantly better discrimination between
epitopes and random sequences than does looking at the transport
of the 9-mer alone. Surprisingly, the discrimination further im-
proves when the TAP score for the N terminus is down-weighted
by a factor of 0.2 in comparison with the score of the C terminus.
This finding was confirmed by an independent dataset consisting
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of mouse epitopes. We propose two main explanations for the
necessary down-weighting of the N terminus in TAP predictions:
1) the uncertainty about which epitope precursors are actually
present in vivo and 2) the possible coevolution of TAP with other
agents in the presentation pathway. Simple computer simulations
of the pathway suggest that the first hypothesis can only partially
account for the down-weighting of the N terminus.

Finally, we tested the identification of epitopes for a single
MHC-I allele (HLA-A0201) with a combined prediction of TAP-
and MHC-I-binding affinities. These combined TAP and MHC-I
predictions give better results than the already very accurate
MHC-I binding predictions alone. In comparison, combining pro-
teasomal cleavage predictions with MHC-I binding leads to worse
results than does relying on MHC-I binding predictions alone.

Materials and Methods
Stabilized matrix method (SMM)

The matrix element si,a denotes the score of amino acid a at sequence
position i of the peptide. The total score Sk for a given peptide k with the
amino acids ak(i) at position i is given by the following summation:

Sk � s0 � �
i

si,ak�i�

where s0 is a constant offset. The values for si,a and s0 are determined by
minimizing the distance between predicted scores Sk and measured values
for a set of training peptides:

���si,a�� � �
k

�Sk � measuredk�
2

To avoid overfitting, a second term is added to the minimization function:

���si,a�, �� � ���si,a�� � ��
i,a

si,a
2

By minimizing this objective function with a nonzero � value, a tradeoff is
introduced between optimally reproducing the experimental values (includ-
ing their inevitable experimental error) and minimizing the parameters si,a.
This forces all parameters that do not significantly lower the distance �
toward small values. The optimal value �opt for � is determined by cross-
validation on the training set.

This mathematical concept is quite commonly used when solving in-
verse problems, where � is called the regularization parameter (a short
introduction to inverse problems is given in Ref. 18, chapter 18).

Datasets

The epitopes were extracted from the SYFPEITHI database (19). All hu-
man and mouse 9-mer MHC-I epitopes for which a source sequence was
available and for which the epitope is found exactly once in that sequence
were included in the database. We did not include MHC-I ligands, which
are known to bind but which are not presented naturally, or epitopes de-
rived from signal sequences. The database was subdivided into three sep-
arate datasets. The HLA-X dataset consists of 203 human 9-mer epitopes
from 87 sequences that are not presented by HLA-A0201. The H2-X data-
set consists of 67 9-mer mouse epitope from 56 sequences, and the HLA-
A0201 dataset consists of 87 human epitopes from 51 sequences.

The TAP affinities of peptides were measured as described in Ref. 13.
We removed all 9-mer peptides that were present in any of the epitope
datasets described above, with 430 9-mer peptides and 64 longer peptides
remaining.

Statistical significance for differences in area under curve
(AUC)

To assess whether one prediction is significantly better than another, we
resampled the set of peptides for which predictions were made. Using
bootstrapping with replacement, 50 new datasets were generated, with a
constant ratio of epitopes to random 9-mers. We then calculated the dif-
ference in AUC for the two predictions on each new dataset. One predic-
tion is significantly better than another if the distribution of the differences
in AUC values is significantly above 0, which we measure using a standard
t test with a p value of 0.001.

MHC-I pathway simulations

Using the protein sequences from which the epitopes of the HLA-X dataset
originate, we randomly generated a set of m fragments per sequence obey-
ing a log-normal length distribution as observed for the cleavage products
of the proteasome (20). These m fragments per sequence are considered to
be the pool of peptides generated by the proteasome that contain a C-
terminal 9-mer, which can bind to an MHC-I molecule. Which of these
fragments becomes an epitope is decided by their affinity to TAP, which we
calculate using Equation 1. The fragment with the highest affinity per se-
quence is considered to be an epitope precursor, defining an epitope with
its last nine down-stream residues. The other m � 1 fragments are dis-
carded. We then tried to identify these artificially generated epitopes
among all other 9-mers contained in the protein sequences by applying the
TAP transport score (Equation 3) at varying values of �. In all simulations,
the best prediction of epitopes was achieved with � values smaller
than one.

There are three free parameters in the simulation: the number m of
different fragments used to define a single epitope and the mean and SD of
the log-normal length distribution of peptides generated. The larger the
value of m, the higher the selective power that TAP has in the pathway in
comparison with the proteasome and the MHC-I molecules. By systemat-
ically increasing the value of m, we found that with m � 10 the AUC value
for the discrimination between epitopes and nonepitopes on the basis of the
TAP score for the C terminus alone was close to those AUC values in Figs.
4 and 5 observed with real experimental data. The length dependence of the
AUC values was in good concordance with that shown in Figs. 4 and 5
when choosing the mean of the log-normal length distribution in the range
9–11.

Proteasomal cleavage prediction

The NetChop algorithm is implemented online at www.cbs.dtu.dk/services/
NetChop. There are different NetChop prediction methods available,
trained on different datasets. We used NetChop 20S, which is trained on in
vitro protein digests. PaProc is also available online at www.paproc.de. We
used the wild type III method, which was trained on the largest dataset. The
FragPredict method currently is not available online, but it is as a computer
program distributed on request by H.-G. Holzhütter. We only used its
cleavage site prediction algorithm and neglected its capability to predict
fragment formation to make it comparable with the other two methods.

Results
Prediction of TAP affinities for 9-mers

We have used four scoring matrices like the one shown in Table I,
which have been designed to predict TAP affinities of 9-mer pep-
tides (expressed in terms of log(IC50) values). Two of the scoring
matrices were taken from the literature and have been derived
directly from experiments. The Ala-matrix was constructed by us-
ing the peptide AAASAAAAY as a reference and measuring IC50

values for the peptides possessing an exchanged amino acid at one
of the nine sequence positions (12, 21). The mix-matrix was gen-
erated using libraries of 9-meric peptides X1X2 . . . Y . . . X9,
where Xi stands for a mixture of different amino acids and Y is a
specific amino acid occupying a fixed sequence position (11).
These libraries compete in binding with the totally randomized
peptide library X1X2 . . . . . X9. The third scoring matrix (SMM
matrix) was established by means of the recently developed SMM
(32). The matrix was determined using a set of peptides by min-
imizing the distance between their measured IC50 values and those
predicted by the scoring matrix. In contrast with previous ap-
proaches, this method takes into account the inevitable noise con-
tained in the experimental data by preferring a “smoother” matrix
to a matrix perfectly (over)fitting the training data. A description of
SMM is given in Materials and Methods. By averaging over the
three scoring matrices, we generated the consensus matrix (Table
I), which is expected to give better predictions of TAP IC50 values
than the individual matrices because their prediction errors can
partially compensate for each other.

To evaluate the quality of these four scoring matrices, we com-
pared their predictions for a set of 430 peptides with experimen-
tally known IC50 values. The resulting scatter plots are shown in
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Fig. 1. With all matrices, a significant correlation between pre-
dicted and measured IC50 values was obtained. As expected, the
consensus matrix gives the best results, although the SMM-matrix
is only marginally worse.

Prediction of TAP affinities for longer peptides

The above scoring matrices have been derived on data for 9-mers.
To predict IC50 values for peptides with more than nine residues,
we took advantage of the fact that binding of peptides to TAP is
mainly determined by the C-terminal and the three N-terminal res-
idues (11, 13, 22, 23). Hence, we neglected the influence of “inner”
residues and calculated TAP affinities of peptides with arbitrary
length by scoring only the C terminus and the three N-terminal
residues using the four corresponding columns of the 9-mer ma-
trices. Thus, for a peptide with the amino acid sequence N1, N2,
N3, N4, . . . , C, the TAP score t is given by

t � mat1,N1 	 mat2,N2 	 mat3,N3 	 mat9,C (1)

where mati,X denotes the score of residue X at sequence position i.
To test how well Equation 1 predicts TAP affinities of peptides
with more than nine residues, we applied it to 64 peptides with
lengths between 10 and 18 aa. As shown in Fig. 2, the correlation
between predicted and measured affinity values is lower than for
the 9-mers, but it is still significant. The consensus matrix again
provided higher correlation than all other matrices, so that it was
used in all further applications.

Using TAP affinity predictions for the identification of epitopes

To assess the selective role of TAP within the MHC-I presentation
pathway, we tested how well the TAP affinity scores can separate
known 9-meric MHC-I epitopes from random 9-mers. We in-
cluded all 9-meric epitopes contained in the SYFPEITHI database
(19) that are presented naturally by any human MHC-I allele, ex-
cept those presented by HLA-A0201 (which are used later on), and
for which the sequence of the source protein is available. We did
not include MHC-I ligands (which are known to bind but which

are not presented naturally) or epitopes derived from signal se-
quences. All other 9-mers contained in the protein sequences from
which the epitopes originated were taken as random control pep-
tides (nonepitopes). We will refer to this set of epitopes and ran-
dom 9-mers as the HLA-X dataset.

This definition of epitopes and nonepitopes makes the SYFPEITHI
database the gold standard in this work. One has to be aware that
several 9-mers will be falsely classified as nonepitopes because the
SYFPEITHI database is not complete. This fact could influence the
results of our analyses only if the rate of unidentified epitopes
(which is expected to be low) becomes comparable with the mis-
classification rates of the prediction methods used. In the case that
future experimental work unexpectedly reveals this premise to be
true, a critical revision of our results will be required.

To measure prediction quality, we used receiver operating char-
acteristic (ROC) curves (24). For a given cutoff value that sepa-
rates peptides by their predicted TAP affinity into potential
epitopes and nonepitopes, the two variables sensitivity (true posi-
tives/total positives) and 1-specificity (false positives/total nega-
tives � false alarm rate) are calculated. By systematically varying
the cutoff value from the lowest to the highest predicted score, a
ROC curve like the one shown in Fig. 3 is plotted. Prediction
quality is measured by the AUC, which is 0.5 for random predic-
tions and 1.0 for perfect predictions. The AUC is equivalent to the
probability that the score of a randomly chosen epitope is lower
(better) than that of a randomly chosen nonepitope. This measure
has the advantage of not relying on a single arbitrarily chosen
cutoff value for the prediction score. Using the complete 9-mer
consensus matrix, the resulting AUC value for the HLA-X dataset
is 0.702 (Fig. 3, curve a), indicating a relevant but not very good
prediction.

We repeated this analysis by including potential epitope
precursors carrying N-terminal extensions. TAP affinities for
N-terminal precursors of length 9, 10, . . . , L were calculated
for all epitopes and nonepitopes by means of Equation 1. The TAP
transport score t� of a potential 9-mer epitope is obtained by averaging

Table I. Consensus scoring matrixa

Amino
Acid

(N1)
Position 1

(N2)
Position 2

(N3)
Position 3 Position 4 Position 5 Position 6 Position 7 Position 8

(C)
Position 9

Amino
Acid

A �1.56 �0.25 �0.10 0.24 �0.10 0.17 0.27 0.00 0.55 A
C 0.05 �0.01 �0.02 0.11 0.09 0.05 0.00 �0.13 0.00 C
D 1.37 1.42 1.83 �0.23 0.33 0.32 1.07 0.32 1.83 D
E 1.65 0.02 1.51 0.08 0.54 �0.13 0.64 0.44 1.58 E
F 1.03 �0.45 �1.05 �0.50 �0.26 0.08 �0.50 0.17 �2.52 F
G 0.28 1.14 1.70 0.45 0.66 0.12 1.41 �0.38 1.41 G
H 0.21 0.33 �0.23 �0.21 �0.11 �0.06 �0.19 0.39 0.55 H
I �0.11 �0.49 �0.62 �0.09 �0.42 �0.75 �0.94 0.45 �0.52 I
K �1.03 �0.41 0.09 �0.23 �0.08 �0.26 0.44 0.12 �0.45 K
L �0.50 0.09 �0.11 0.11 �0.34 0.02 �0.73 0.01 �0.94 L
M �0.38 �0.46 �0.58 �0.35 �0.26 0.30 �0.64 �0.11 �0.29 M
N �1.43 0.69 1.01 0.38 0.49 �0.27 0.16 0.33 1.33 N
P 1.43 3.00 0.22 �0.04 �0.72 �0.13 �0.84 0.03 �0.09 P
Q 0.47 �0.97 0.39 0.15 0.15 �0.07 0.34 0.26 0.12 Q
R �1.34 �1.47 �0.42 �0.27 �0.32 �0.75 �0.09 �0.42 �1.47 R
S �0.56 �0.34 0.11 0.27 0.45 0.31 0.87 �0.51 2.26 S
T �0.12 �0.04 0.43 0.23 0.43 0.49 0.39 �0.46 0.72 T
V �0.49 �0.50 �0.71 0.27 0.37 �0.02 �0.29 0.10 �0.30 V
W 0.54 �0.64 �1.65 �0.18 �0.78 0.31 �0.50 �0.63 �0.87 W
Y 0.50 �0.67 �1.80 �0.18 �0.13 0.28 �0.87 0.02 �2.91 Y

a The matrix was generated by averaging over the Ala-, Mix-, and SMM-matrix described in the text and normalized by setting the mean of each column to zero. The matrix
elements represent log(IC50) values for TAP binding that add up to the log(IC50) value of the peptide. A low matrix entry at a given position corresponds to an amino acid well
suited for TAP binding.
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over the calculated affinities of all these precursors up to a maximal
length L:

t�L �
1

L � 8 �
l�9

L

t� precursorl�

� mat9,C �
1

L � 8�
l�9

L

mat1,N1 � mat2,N2 � mat3,N3 (2)

Note that all precursors contribute to the transport score with iden-
tical C termini, whereas the N-terminal contributions vary. Suc-
cessively increasing the maximal number L of allowed N-terminal
extensions and using the corresponding TAP transport scores to
discriminate between epitopes and nonepitopes, we obtained the
AUC values depicted in Fig. 4 (curve a). For L � 9 (no N-terminal
extension), Equation 2 is equivalent with Equation 1 and the AUC
value amounts to 0.700, which is marginally lower than the value

0.702 obtained when using the complete scoring matrix. This find-
ing further justifies the usage of Equation 1. As shown in Fig. 4,
the AUC values increase significantly for values of L 
 9, dem-
onstrating that inclusion of precursor peptides into TAP scoring
improves the prediction of epitopes. (In Materials and Methods,
we explain how we evaluate the significance of differences in AUC
values.)

The increase of AUC values for L 
 18 was not expected, be-
cause the TAP transport efficiency for peptides exceeding this
length has been shown to drop off significantly (25). Evidently,
increasing step by step the possible length L of epitope precursors,
the statistical average across their N-terminal scores will converge
against a stable limit value, thus rendering N-terminal scoring
more and more meaningless for the prediction of TAP affinities.
Hence, in the limit L 3 �, only the C terminus will account for
differences in the TAP scores of different 9-mers. To see how close
we are to this limit, we calculated the AUC using the C terminus

FIGURE 1. Comparison of predicted and measured in vitro TAP affinity
values of 9-mer peptides. The scatterplots depict the observed log(IC50) values
of 430 9-meric peptides vs predicted log(IC50) values using the scoring matrix
indicated at the bottom right of each panel. The solid curves represent linear
regression lines. Because the SMM matrix is calculated from the IC50 values
of the same 430 peptides, its scores were determined using fivefold cross-
validation, i.e., splitting the total set of peptides into five subsets, establishing
the scoring matrix on only four of these subsets, and then using the matrix to
make predictions for the subset that was left out.

FIGURE 2. Comparison of predicted and measured in vitro TAP affinity
values for peptides longer than 9 aa. The scatterplots depict the observed
log(IC50) values of 64 peptides vs theoretical log(IC50) values predicted by
using the scoring matrix indicated at the bottom right of each panel. The
length distribution of peptides was as follows: 36 10-mers, 18 11-mers, six
12-mers, and one each of 13-, 15-, 16-, and 18-mers. The solid curves
represent linear regression lines. The predicted log(IC50) values were cal-
culated by applying the scoring matrices derived for the 9-meric peptides
(cf Fig. 1) to the three N-terminal residues and the C-terminal residue of
each peptide as described by Equation 1.
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for scoring only (Fig. 4, curve b). To our surprise, the AUC value
of 0.782 is higher than the AUC values obtained before. This find-
ing raises the question of whether the rise in AUC values seen with
increasing length L of precursors does really reflect the usage of
longer precursors in Ag production or whether the N-terminal
scores are just adding noise to the prediction, which is smoothed
out with increasing L. To check this, we weighted TAP transport
scores of the N-terminal residues by a factor �:

t�L,� � mat9,C �
�

L � 8 �
l�9

L

mat1,N1 � mat2,N2 � mat3,N3 (3)

In Fig. 4, curve a corresponds with � � 1 and curve b corresponds
with � � 0. If the increase in AUC values obtained with precursors
L 
 9 is only an artifact, one would expect the AUC for all values
of L to grow monotonously when decreasing � from 1 to 0. If not,
one would expect to find the optimal value of � somewhere be-
tween 1 and 0. The latter case is true: a maximum value of AUC
was obtained for � � 0.2 (Fig. 4, curve c), which was significantly
above the AUC value obtained when only scoring the C terminus.
Curve b in Fig. 3 depicts the ROC obtained when choosing L � 10
(i.e., one N-terminal extension) and � � 0.2. Hence, predicting
TAP affinities of N-terminally extended epitope precursors by
down-weighting their N-terminal scores in comparison with their
C-terminal scores significantly improves the discrimination be-
tween epitopes and nonepitopes. This indicates that such precur-
sors indeed play an important role in Ag presentation. We will
analyze possible explanations for the down-weighting of the N
terminus below.

To exclude that the improved scoring obtained when choosing
� � 1 is a specific property of the HLA-X dataset, we applied the
same scoring procedure to a completely independent set of mouse

epitopes (H2-X dataset). We used the human TAP matrices to
separate epitopes from random 9-mers (cf Fig. 5). It has been
shown that there are significant differences between the murine and
human TAP specificities (26), because human TAP translocates
peptides with hydrophobic and basic C termini, whereas mouse
TAP prefers only peptides with hydrophobic C termini. As ex-
pected, this results in generally lower AUC values than those for
the HLA-X dataset. Nevertheless, qualitatively the three curves
a–c are related to each other in exactly the same way as those
shown in Fig. 4 for the HLA-X dataset. Using the scores for the N
and C termini with equal weights (� � 1) for the prediction of
TAP affinities results in a worse discrimination between epitopes
and nonepitopes than that from neglecting the N terminus com-
pletely (� � 0). Again, a better prediction of epitopes on the basis
of their TAP affinities is achieved when the scores for the N ter-
minus are down-weighted with � � 0.2.

TAP affinity predictions for individual MHC-I alleles

We repeated the calculations from the previous section for the
individual MHC-I alleles that make up the HLA-X dataset to see
how the results vary. We restricted this analysis to those alleles for
which at least 10 epitopes are present in the HLA-X dataset. First,
we studied how well the epitopes of each individual allele can be
identified by TAP affinity scores computed without inclusion of

FIGURE 3. ROC curves for the HLA-X dataset. Each point of the curve
belongs to a cutoff value for the TAP transport score, separating the pep-
tides of the HLA-X dataset into good TAP substrates and bad TAP sub-
strates. Equating good TAP substrates with epitopes and bad TAP sub-
strates with nonepitopes, one may set up a two-by-two contingency table.
Sensitivity is defined as the fraction of epitopes predicted to be good TAP
substrates. Specificity is defined as the fraction of nonepitopes (random
peptides in our studies) predicted to be bad TAP substrates. Curve a uses
the TAP affinities predicted by the consensus matrix for the 9-mers them-
selves as the transport score, resulting in an AUC value of 0.702. Curve b
uses Equation 3 as the transport score with � � 0.2 and L � 10, i.e.,
allowing for precursors up to length 10 and down-weighting the contribu-
tion of the N-terminal residues (AUC � 0.791). The improvement is al-
most completely in the high sensitivity region. The arrow indicates the
point in curve b that corresponds to the sensitivity and specificity reached
when choosing the cutoff value � 1, which is used later in the combined
TAP and MHC-I predictions.

FIGURE 4. Prediction quality for the HLA-X dataset as a function of
the maximal precursor lengths. Plotted is the prediction quality measured
by the AUC of the TAP transport score given in Equation 3 for different
predictions. a, Equal weight for N and C terminus (� � 1); b, C terminus
score only (� � 0); c, optimal prediction with down-weighted N terminus
(� � 0.2).

FIGURE 5. Prediction quality for the H2-X dataset as a function of the
maximal precursor lengths. Plotted is the prediction quality measured by
the AUC of the TAP transport score given in Equation 3 for different
predictions. a, Equal weight for N and C terminus (� � 1); b, C terminus
score only (� � 0); c, better prediction with down-weighted N terminus
(� � 0.2)
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possible precursors or down-weighting of the N-terminal residues
(i.e., putting L � 9 and � � 1 in Equation 3). The resulting AUC
values (Table II) show huge variations from 0.39 to 0.89. The
differences in prediction quality for the individual alleles corre-
spond very well with those in Refs. 13 and 14, where the alleles
HLA-B27, -A3, and -A24 were classified as efficient for TAP load-
ing and the alleles HLA-B07, B08, and A0201 were classified as
inefficient for TAP loading.

Repeating the AUC calculations with the optimal parameters
L � 10 and � � 0.2 obtained for the entire HLA-X dataset, the
AUC values fell in a much narrower range between 0.71 and 0.88,
i.e., a subdivision into TAP-efficient and TAP-inefficient alleles is
no longer preserved. These results provide evidence that TAP
plays an equally important role for peptide loading of all alleles
considered. Intriguingly, some alleles such as HLA-B27 or
HLA-A3 seem to be preferentially loaded with peptides directly
imported from the cytosol, whereas other alleles such as HLA-
0201 are preferentially loaded with peptides entering the ER as
N-terminally extended precursors where they are cut to final size.

Finally, we calculated the optimal value of � for each individual
allele when setting L � 10. The resulting values varied between 0
and 4, showing that the optimal value of � is extremely allele
specific: the better the C-terminal residues required for effective
TAP transport agree with those C-terminal residues enabling ef-
fective MHC-I binding, the lower the weight that has to be put on
the N-terminal residues. The optimal value of � � 0.2 for the
whole HLA-X dataset shows that, on the average, C-terminal
amino acid motives required for effective TAP transport and
MHC-I binding overlap more strongly than the corresponding N-
terminal motives do. This is probably due to the stronger force for
coevolution on the C terminus, which undergoes no change from
TAP transport to MHC-I binding, whereas the N terminus can be
trimmed.

Consequences of the uncertainty about which N-terminally
extended precursors are generated in vivo

Another explanation of why better epitope predictions were
achieved with � � 1 is the uncertainty about which epitope pre-
cursors are actually transported in vivo to liberate the definitive
epitope in the ER by N-terminal trimming. Equation 3 is based on
the unrealistic assumption that up to a critical length L, all N-
terminally prolonged precursors of an epitope are present in com-
parable abundance. Given that several precursor are not generated
in vivo, their score for the N terminus will dilute that of the ex-
istent precursors. From the statistical point of view, this would
favor putting a higher weight on the score of the C terminus or,
equivalently, down-weighting scores of the N-terminal residues.

To estimate the implications of precursor uncertainty for the
choice of �, we have performed simplified simulations of the
MHC-I pathway (a detailed description of these simulations is
given in Materials and Methods). We randomly generated an ar-

tificial set of epitopes possessing N-terminally prolonged precur-
sors with good TAP affinities and obeying a log-normal length
distribution as reported for fragments generated by the 20S and
26S proteasomes (20). We then tried to reidentify these epitopes
among a set of random peptides using the TAP score described
above. The highest AUC values were indeed obtained when choos-
ing � � 1. Fig. 6 shows the AUC values for such a simulated
dataset. In this case, the highest AUC value was obtained for L �
11 and � � 0.6. Varying the width of the hypothetical length
distribution in these simulations, the optimal � values were always
between 0.6 and 0.9, i.e., larger than the value � 
 0.2 yielding the
best prediction of epitopes on real experimental datasets but
always �1.

Identification of epitopes by combining predictions of TAP
transport efficiency with predictions of MHC-I affinity

We tested whether the combination of predictions for two main
steps of the presentation pathway, TAP transport and MHC-I bind-
ing, may improve the identification of epitopes. These calculations
were performed on a set of 87 HLA-A0201-presented epitopes that
had been omitted from the HLA-X dataset. For the prediction of
peptide binding to HLA-A0201, an SMM-type scoring matrix was
recently established on a dataset comprising the IC50 values of 533
nonepitope peptides.3 This scoring matrix possesses a high capac-
ity to identify epitopes (AUC � 0.919; cf Fig. 7, curve a). To
combine predictions of MHC-I binding scores with predictions of
TAP transport, we first calculated TAP binding scores for all
9-mers contained in the source sequences of the HLA-A0201
epitopes using Equation 3 with the parameters L � 10 and � � 0.2,
which have given the best results for the HLA-X dataset. We then
classified all 9-mers with TAP scores above the threshold value 1
as not transportable and excluded them from the set of epitope
candidates. This cutoff value was chosen by examining the ROC
curve for the HLA-X dataset: only 1.5% of epitopes, but 32% of
random 9-mers, have a higher (worse) TAP score (Fig. 3, arrow).

In the second step, the predicted MHC-I binding scores of the
remaining peptides (having TAP scores �1) were used to discrim-
inate between epitopes and nonepitopes. Based on this two-step
prediction protocol, the AUC value increases significantly to 0.932
(Fig. 7, curve b). As elsewhere in the manuscript, the significance
of the difference between the AUC values was assessed using a t
test with p � 0.001, as described in Materials and Methods. The
improvement is largest in the high sensitivity region. Demanding

FIGURE 6. Prediction quality on a simulated dataset. The simulated
dataset was generated as described in Materials and Methods with m � 10
and a log normal fragment length distribution centered around 11. Plotted
is the prediction quality measured by the AUC of the TAP transport score
given in Equation 3 for different predictions. a, Equal weight for N and C
terminus (� � 1); b, C terminus score only (� � 0); c, optimal prediction
with down-weighted N terminus (� � 0.6).

Table II. Individual alleles

Allele
No. of

Epitopes
AUC

(L � 9, � � 1)
AUC

(L � 10, � � 0.2)
Optimal �
for L � 10

HLA-B35 10 0.39 0.80 0.0
HLA-B07 11 0.43 0.71 0.0
HLA-B08 10 0.69 0.80 0.0
HLA-B44 11 0.78 0.88 0.0
HLA-A24 37 0.81 0.87 1.0
HLA-A3 11 0.82 0.75 1.2
HLA-B27 20 0.89 0.77 4.0
HLA-A0201 87 0.65 0.70 0.4
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100% sensitivity, specificity is increased from 52 to 62% when
using the combined prediction instead of MHC-I affinity prediction
alone, which is equivalent to a 20% drop in the number of false
positives. This drop in the rate of false positives increases from 5
to 25% with rising sensitivity over the range of the ROC curve.
This systematic increase can be explained by the fact that, due to
similar peptide preferences of TAP and MHC, the likelihood for a
peptide with high affinity to HLA-A0201 to possess at least a de-
cent TAP transport rate is higher than for a peptide with low af-
finity to HLA-A0201.

We repeated the same two-step prediction for several mouse
MHC-I alleles using scoring matrices for the MHC-I affinity pre-
diction that were measured by Udaka et al. (27). Unfortunately, the
number of epitopes available per allele is small (ranging from 9 to
21). For three of the alleles, the combined predictions gave better
AUC values than did MHC-I affinity predictions alone (data not
shown); for one allele the combined prediction was worse. This
shows that the combined MHC-I 	 TAP prediction using a human
TAP matrix works for mouse epitopes, even though there are sig-
nificant differences between the murine and human TAP specific-
ities. This should improve further when using a scoring matrix
based on experimental data for murine TAP.

Identification of epitopes by combining predictions of C-terminal
proteasomal cleavages with predictions of MHC-I affinity

As demonstrated above, predictions of epitopes buried within a set
of protein sequences can be improved by using calculated TAP
transport efficiencies as a filter that rules out poorly transported
peptides without notably reducing the number of true epitopes in
the remaining dataset. Hence, it was obvious to check whether the
same strategy can be used to filter out those epitope candidates that
are unlikely to be generated by the proteasome. Hitherto, there are
no indications that the C terminus of proteasomal fragments un-
dergoes further trimming along the MHC-I presentation pathway
(28). Therefore, selecting potential epitopes and their N-terminally
prolonged precursors by the probability that their C terminus is
generated by the proteasome should single out false epitope can-
didates without losing true epitope candidates. To this end, we
have used the three publicly available methods, NetChop (10),
PaProc (29), and FragPredict (8) to predict C-terminal proteasomal
cleavages. The PaProc method gives four different discrete scores
(�, 	, 		, and 			), whereas the other methods have a con-

tinuous output. First, we tested whether predictions of C-terminal
cleavages alone may provide a reasonable discrimination between
epitopes and nonepitopes. Fig. 8a shows the ROC curves for the
three methods when applied to the HLA-X dataset. According to
the AUC values, the best discriminations were achieved with Net-
Chop, closely followed by FragPredict, and PaProc was signifi-
cantly inferior to the other two prediction methods. Comparing the
ROC curves of Fig. 8a with those of Fig. 3, it can be inferred that
the discriminating power of existing prediction methods for pro-
teasomal cleavage sites is far below that of TAP transport scoring
developed in this paper.

We also tested combined predictions of C-terminal proteasomal
cleavage and MHC-I binding, using the same two-step prediction
protocol as described for TAP. For each of the three prediction
methods of proteasomal cleavages, the cutoff value was chosen
such that 30% of peptides on the HLA-X dataset had lower cleav-
age scores for their C-terminal residue and thus were singled out as
“not generated.” The same fraction of peptides is classified as non-
transported by TAP. For PaProc, the fraction of omitted peptides
was larger, in that this method predicted �60% of peptide bonds
to have the lowest score (�, not cleaved). The ROC curves for the
combined predictions are shown in Fig. 8b, all of them indicating
that the combined predictions are significantly worse than those
based on predictions of MHC-I binding affinities alone.

FIGURE 7. ROC curves for the combined TAP and MHC-I prediction
on the HLA-A0201 dataset. The curve with black diamonds (a; AUC �
0.919) shows the (very high) level of the MHC-I prediction alone. The
consistently better curve with gray squares (b; AUC � 0.932) is made by
classifying all 9-mers with a TAP transport score worse than 1 as not
transported (� � 0.2, L � 10) and limiting the MHC-I prediction to the
transported peptides.

FIGURE 8. ROC curves for proteasomal cleavage prediction. a, For the
three proteasomal cleavage prediction methods NetChop (AUC � 0.61),
FragPredict (AUC � 0.59), and PaProc (AUC � 0.54), the score for C-
terminal cleavage is used to predict epitopes from the HLA-X dataset. b,
Combined proteasomal cleavage and MHC-I binding prediction. Potential
epitopes with a score for proteasomal cleavage of their C terminus worse
than a fixed cutoff are considered not cleavable; the others are scored ac-
cording to their predicted MHC-I binding affinity. The best results are again
obtained with NetChop (cutoff � 0.1, AUC � 0.872), followed by FragPredict
(cutoff � 0.5, AUC � 0.858) and PaProc (cutoff � 	, AUC � 0.623), all of
which are worse than using MHC-I prediction alone (AUC � 0.919).
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Discussion
In this paper, we have developed a method for predicting the TAP
transport efficiency for peptides of arbitrary length. To this end, we
exploited the fact that the terminal residues of a peptide determine
most of its binding ability and accordingly used the scoring ma-
trices derived from 9-mer peptide TAP affinity assays to score only
the C terminus and the three outmost N-terminal residues. As dem-
onstrated in Fig. 2, this procedure gives reasonably good predic-
tions of TAP affinities for peptides of size 10–18.

Our interest in TAP affinities of peptides longer than 9 aa was
raised because it recently became clear that several MHC-I
epitopes are generated by N-terminal trimming of precursor pep-
tides that are likely to be transported into the ER by TAP. The
significant improvement of epitope predictions we found when
considering transport of precursors strongly suggests that a large
portion of epitopes is indeed processed this way. This underlines
the pressure exerted by TAP on the selection of MHC-I epitopes.

Because the true in vivo precursors of an epitope are not gen-
erally known, we have used an effective TAP score by averaging
across the scores of all precursors up to a certain length. Interest-
ingly, the highest prediction quality was achieved when the scores
of the N-terminal residues were down-weighted. We reasoned on
the basis of simulations and results from scoring for individual
MHC-I alleles that this down-weighting partially reflects coevolu-
tion of TAP and the average MHC-I allele as to the preference for
certain C-terminal residues which epitope precursors are used
in vivo.

Using predicted TAP transport efficiencies as a filter before pre-
diction of MHC-I binding affinities, it was possible to further im-
prove the already very accurate classification quality achieved us-
ing MHC-I affinity predictions alone. For example, a researcher
interested in a list including all possible HLA-A0201 epitopes
stemming from a given protein (100% sensitivity required) can
expect a 20% decrease in the number of false positive suggestions
when using the combined TAP 	 MHC predictions rather than the
MHC predictions alone. Such a two-step prediction protocol, how-
ever, failed when predictions of C-terminal proteasomal cleavages
were used as filter; i.e., relying on MHC-I affinity predictions alone
gave better results than did combining them with proteasomal
cleavage predictions. This disappointing result has three possible
causes. One is that the selective power of the proteasome is weak,
in that it generates nearly every possible peptide. Second, there
might be other proteases serving as suppliers of antigenic peptides
besides the proteasome. Finally, existing prediction algorithms of
proteasomal cleavage sites might not be accurate enough. We fa-
vor the last explanation because in vitro digests of epitope-con-
taining model substrates by the proteasome provide with very few
exceptions the epitope or one N-terminally prolonged precursor
(30). The poor quality of prediction algorithms for proteasomal
cleavage sites is also evidenced by contradictory results obtained
when applying them to the same set of test protein sequences. We
think that the poor prediction quality of proteasomal cleavages is
mainly caused by the lack of a sufficiently large set of quantitative
and consistent experimental data on cleavage rates, which are more
difficult to measure and interpret (31) than the affinity assays used
to characterize peptide binding to TAP and MHC-I.

Summarizing our attempts to improve epitope predictions by a
combination of different prediction tools, we have to conclude that
currently the only reliable strategy for reducing a given set of
epitope candidates without the risk of losing true epitopes is to
filter out those peptides exhibiting poor TAP transport scores.

Another approach for predicting potential MHC-I epitopes by
their amino acid sequence is to identify sequence motifs common

to all epitopes presented by a specific MHC-I allele, as realized in
the SYFPEITHI database (19). This approach does not differenti-
ate between the influences of the proteasome, TAP or MHC-I on
epitope selection, but has been shown to work well in practice.
However, it has a principal drawback, because epitope sequences
do not contain the full information used in the presentation path-
way; the epitope may originate from a group of N-terminal pro-
longed precursors, generated by the proteasome, partially trimmed
by cytosolic peptidases, transported by TAP into the ER, and then
cut to final size. These steps preceding binding to the MHC-I re-
ceptor may depend on sequence motifs in the flanking regions up-
and downstream of the generated peptide. Hence, we believe our
approach to developing prediction algorithms for each individual
step of the MHC-I presentation pathway and combining them to be
superior. However, high quality experimental data for each step
and advanced prediction techniques are needed to rival the predic-
tion quality currently achieved by SYFPEITHI. Unfortunately, we
cannot compare the predictive quality of the two approaches, be-
cause there is no independent blind set available. SYFPEITHI is
trained on the data we use as test sets. For a neutral comparison, a
significantly large set of newly identified naturally presented
epitopes would be needed, or an older version of the SYFPEITHI
prediction algorithm would have to be used and tested on more
recently included epitopes. As a consequence, no conclusions
about which method is currently better at identifying epitopes can
be drawn here.

The improvements achieved when including TAP transport of
precursors into epitope predictions are in the high sensitivity re-
gime of the ROC curve (cf Fig. 7). It is often argued that high
sensitivity of epitope predictions is of less practical relevance than
having a high specificity, i.e., to end up with a short list of high
probability epitope candidates for a given protein sequence. This
view is wrong for two reasons. First, from the medical point of
view, it can be equally interesting to identify all possible epitopes
within a given protein sequence, requiring a high sensitivity of
predictions. Second, when combining predictions for several steps
of the MHC-I pathway whereby predictions of one step are used as
a filter for the input to the next, it is very important to throw out
as few true epitopes in each step as possible. Such a multistep
prediction protocol automatically increases specificity from one
step to the next.

There are two free parameters in our prediction of TAP transport
scores: � and L. Throughout this paper, we used the optimal values
� � 0.2 and L � 10 determined for the HLA-X dataset containing
epitopes from all human MHC-I alleles except HLA-A0201. These
parameters show large variations when calculated for the individ-
ual alleles that make up the HLA-X dataset (Table II), because
they are heavily influenced by each individual allele’s binding
preference. The parameter values for the entire HLA-X dataset,
which averages out the individual allele’s binding preferences,
should reflect the true effect of TAP more accurately. The optimal
parameter values calculated for the H2-X dataset (�opt � 0.02 and
Lopt � 11) or the combined MHC-I and TAP predictions for HLA-
A0201 (�opt � 0.6 and Lopt � 18), which should also reflect the
true effect of TAP, are considerably different from those for the
HLA-X set. However, the decrease in prediction quality when us-
ing � � 0.2 and L � 10 instead of the optimal parameters for the
individual datasets is quite small (�AUC � 0.006) compared with
the loss in prediction quality of �AUC 
 0.100 when making
predictions without down-weighting and neglecting precursors
(i.e., � � 1, L � 9). Apparently, whereas down-weighting of the
N terminus (� � 1) and inclusion of precursors longer than the
presented 9-mers (L 
 9) improve prediction quality, the optimal
values for � and L are not natural constants. Because the optimal
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parameters � � 0.2 and L � 10 determined on the largest dataset
(HLA-X) lead to predictions close to the optimum on all datasets,
we recommend their usage in all cases, although from a biological
perspective L � 10 seems to be too small because longer precur-
sors are known to be used in vivo.

When applying an epitope prediction protocol that is based on
algorithms for several individual steps of the MHC-I presentation
pathway, it is of utmost importance that each prediction algorithm
is trained on a database containing only information on that spe-
cific step. For example, prediction methods that are supposed to
predict MHC-I binding, but have been trained on data including
epitope presentation implicitly take into account side effects pro-
duced by TAP and the proteasome. A combination of such an
“impure” MHC-I binding prediction with a prediction of TAP
transport or proteasomal cleavage thus bears the risk of overesti-
mating the role of TAP or the proteasome for the presentation
pathway. For that reason, we consider scoring matrices derived
from randomized peptide libraries to be the best estimation of
MHC-I binding, unless a large amount of individual peptide bind-
ing data is available, as is the case for the HLA-A0201 allele. For
the same reason, examining the cleavage determining amino acid
motifs of the proteasomal cleavages by analyzing average epitope
sequences and their flanking regions (NetChop 2.0) can be prob-
lematic. If a strong preference for a favorable residue at the C
terminus of an epitope is detected, this could be the result of pro-
teasomal cleavages, TAP preference, or being an average trait of
MHC-I molecules.

Outlook

Our work shows that including N-terminally prolonged precursors
of an epitope in TAP transport may greatly improve epitope pre-
dictions. This also makes clear that epitope prediction tools using
only reported epitope sequences as an input, in the long run, will
be inferior to prediction tools based on prediction algorithms for
all steps of the entire presentation pathway that take into consid-
eration the generation and successive procession of epitope pre-
cursors. The next step along this line is obviously to include the
proteasome, for which no prediction algorithms with sufficiently
high reliability are currently available. Accurate prediction of pro-
teasomal fragments would lead to a further improvement of TAP
transport predictions which then, instead of considering all precur-
sors up to length L as equally probable, can be restricted to those
precursors actually generated. Eventually, this should also make
the parameter � obsolete, because there would be no uncertainty as
to which precursors are generated, and coevolution between pep-
tide specificities of the proteasome, TAP, and MHC-I would be
included in the model.
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