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Abstract  

Background. The ability to predict antibody binding sites (aka antigenic determinants or B-cell 

epitopes) for a given protein is a precursor to new vaccine design and diagnostics. Among the 

various methods of B-cell epitope identification X-ray crystallography is one of the most reliable 

methods. Using these experimental data computational methods exist for B-cell epitope 

prediction. As the number of structures of antibody-protein complexes grows, further interest in 

prediction methods using 3D structure is anticipated. This work aims to establish a benchmark 

for 3D structure-based epitope prediction methods.  

Results. Two B-cell epitope benchmark datasets inferred from the 3D structures of antibody-

protein complexes were defined. The first is a dataset of 62 representative 3D structures of 

protein antigens with inferred structural epitopes. The second is a dataset of 82 structures of 

antibody-protein complexes containing different structural epitopes. Using these datasets, eight 

web-servers developed for antibody and protein binding sites prediction have been evaluated. In 

no method did performance exceed a 40% precision and 46% recall. The values of the area 

under the receiver operating characteristic curve for the evaluated methods were about 0.6 for 

ConSurf, DiscoTope, and PPI-PRED methods and above 0.65 but not exceeding 0.70 for 

protein-protein docking methods when the best of the top ten models for the bound docking 

were considered; the remaining methods performed close to random. The benchmark datasets 

are included as a supplement to this paper. 

Conclusions. It may be possible to improve epitope prediction methods through training on 

datasets which include only immune epitopes and through utilizing more features characterizing 

epitopes, for example, the evolutionary conservation score. Notwithstanding, overall poor 

performance may reflect the generality of antigenicity and hence the inability to decipher B-cell 

epitopes as an intrinsic feature of the protein. It is an open question as to whether ultimately 

discriminatory features can be found.  
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Background 

A B-cell epitope is defined as a part of a protein antigen recognized by either a particular 

antibody molecule or a particular B-cell receptor of the immune system [1]. The main objective 

of B-cell epitope prediction is to facilitate the design of a short peptide or other molecule that 

can be synthesized and used instead of the antigen, which in the case of a pathogenic virus or 

bacteria, may be harmful to a researcher or experimental animal [2]. A synthetic peptide may be 

continuous, that is, a short contiguous stretch of amino acid residues, or discontinuous, 

comprising atoms from distant residues but close in three-dimensional space and on the 

surface of the protein.  

Synthetic peptides mimicking epitopes, as well as anti-peptide antibodies, have many 

applications in the diagnosis of various human diseases [3-7]. Also, the attempts have been 

made to develop peptide-based synthetic prophylactic vaccines for various infections, as well as 

therapeutic vaccines for chronic infections and noninfectious diseases, including autoimmune 

diseases, neurological disorders, allergies, and cancers [8-10]. The immunoinformatics software 

and databases developed to facilitate vaccine design have previously been reviewed [11, 12]. 

  During the last 25 years B-cell epitope prediction methods have focused primarily on 

continuous epitopes. They were mostly sequence-dependent methods based upon various 

amino acid properties, such as hydrophilicity [13], solvent accessibility [14], secondary structure 

[15-18], and others. Recently, several methods using machine learning approaches have been 

introduced that apply hidden Markov models (HMM) [19], artificial neural networks (ANN) [20], 

support vector machine (SVM) [21], and other techniques [22, 23]. Recent assessments of 

continuous epitope prediction methods demonstrate that “single-scale amino acid propensity 

profiles cannot be used to predict epitope location reliably” [24] and that “the combination of 
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scales and experimentation with several machine learning algorithms showed little improvement 

over single scale-based methods” [25].  

 As crystallographic studies of antibody-protein complexes have shown, most B-cell 

epitopes are discontinuous. In 1984, the first attempts at epitope prediction based on 3D protein 

structure was made for a few proteins for which continuous epitopes were known [26-28]. 

Subsequently, Thornton and colleagues [29] proposed a method to locate potential 

discontinuous epitopes based on a protrusion of protein regions from the protein's globular 

surface. However, until the first X-ray structure of an antibody-protein complex was solved in 

1986 [30], protein structural data were mostly used for prediction of continuous rather than 

discontinuous epitopes.  

In cases where the three-dimensional structure of the protein or its homologue is known, 

a discontinuous epitope can be derived from functional assays by mapping onto the protein 

structure residues involved in antibody recognition [31]. However, an epitope identified using an 

immunoassay may be an artefact of measuring cross-reactivity of antibodies due to the 

presence of denatured or degraded proteins [32, 33], or due to conformational changes in the 

protein caused by residue substitutions that may even lead to protein mis-folding [34]. 

Therefore, structural methods, particularly X-ray crystallography of antibody-antigen complexes, 

generally identify B-cell epitopes more reliably than functional assays [35]. 

B-cell epitopes can be thought of in a structural and functional sense. Structural epitopes 

(also called antigenic determinants) are defined by a set of residues or atoms in the protein 

antigen contacting antibody residues or atoms [33, 36]. In contrast, a functional epitope consists 

of antigen residues that contribute significantly to antibody binding [36, 37]. Functional epitopes 

are determined through functional assays (e.g., alanine scanning mutagenesis) or calculated 

theoretically using known structures of antibody-protein complexes [38, 39]. Thus, functional 
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and structural epitopes are not necessary the same. Functional epitopes in proteins are usually 

smaller than structural epitopes; only three to five residues of the structural epitope contribute 

significantly to the antibody-antigen binding energy [40]. This work focuses on structural 

epitopes inferred from known 3D structures of antibody-protein complexes available in the 

Protein Data Bank (PDB) [41]. 

Antibody-protein complexes can be categorized as intermediate transient non-obligate 

protein-protein complexes [40, 42]. Non-obligate complexes, implying that individual 

components can be found on their own in vivo, are classified as either permanent or transient 

depending on their stability under particular physiological and environmental conditions [43]. For 

example, many enzyme-inhibitor complexes are permanent non-obligate complexes. Transient 

non-obligate complexes range from weak (e.g., electron transport complexes), to intermediate 

(e.g., signal transduction complexes), and to strong (e.g., bovine G protein forming a stable 

trimer upon GDP binding) [44]. Most antibodies demonstrate intermediate affinity for their 

specific antigens [45]. Based on this classification, general methods for the prediction of 

intermediate transient non-obligate protein-protein interactions have been applied to the 

prediction of structural epitopes [40, 42]. For example, Jones and Thornton, using their method 

for predicting protein-protein binding sites [46], successfully predicted B-cell epitopes on the 

surface of the β-subunit of human chorionic gonadotropin (βhCG) [47].  

Since the number of available structures of antibody-protein complexes remains limited, 

thus far only a few methods, CEP (Conformational Epitope Prediction) [48] and DiscoTope [49], 

for B-cell epitope prediction using a protein of a given three-dimensional structure have been 

developed. In the near future, with growth in the number of available structures of antibody-

protein complexes, extensive development in this area is expected. Existing and new methods 

for epitope prediction demand a benchmark which will set the standard for the future 

comparison of methods. To facilitate the further development of this standard, we have 



 6

developed B-cell epitope benchmark datasets inferred from existing 3D structures of antibody-

protein complexes. Further, using the benchmark datasets, we evaluated CEP, DiscoTope, and 

six recently developed publicly available web-servers for generalized protein-protein binding site 

prediction using various approaches: protein-protein docking (ClusPro [50], DOT [51] and 

PatchDock [52]); structure-based methods applying different principals and trained on different 

datasets (PPI-PRED [53], PIER [54] and ProMate [55]), and residue conservation (ConSurf 

[56]).  
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Results and discussion 

Structural epitope definition 

Three definitions of an epitope inferred from the X-ray structures of antibody-protein complexes 

were considered: (1) The epitope consists of protein antigen residues in which any atom of the 

residue looses more than 1Å2 of accessible surface area (ASA) upon antibody binding. ASA 

was calculated using the program NACCESS [57]; (2) The epitope consists of protein antigen 

residues in which any atom of the epitope residue is separated from any antibody atom by a 

distance ≤ 4Å; (3) The epitope consists of protein antigen residues in which any atom of the 

epitope residue is separated from any antibody atom by a distance ≤ 5Å. These three definitions 

were used for two reasons. First, the methods evaluated in this work use one of these three 

definitions, second, we wished to study how the epitope definition influenced the results.  

Results (not shown) indicated that the structural epitope definition did not influence the 

outcome. Hence, unless otherwise specified, results are based on the second epitope definition.  

Construction of the benchmark datasets 

Two benchmark datasets were derived from the 3D structures of antibody-protein complexes 

available from the PDB [41]:  

• Dataset #1 - Representative 3D structures of protein antigens with structural epitopes 

inferred from 3D structures of antibody-protein complexes. This dataset is intended for 

the study of the antigenic properties of proteins as well as for development and 

evaluation of the methods based on protein structure alone, or protein-protein unbound 

docking methods, that is, if the structure of the antibody is known or can be modeled. 
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Here this dataset was used for the evaluation of scale-based methods (DiscoTope, 

PIER, ProMate and ConSurf). The dataset contains 62 antigens, 52 of which are 

one-chain antigen proteins. 

• Dataset #2 - Representative 3D structures of antibody-protein complexes presenting 

different epitopes. This dataset is useful for the study of the properties of individual 

epitopes as well as for development and evaluation of protein-protein bound docking 

methods. Since the current work attempts to compare the methods of different types, 

including protein-protein docking methods, this dataset was used to compare the 

performance of all methods to each other. The dataset contains 70 structures of proteins 

in complexes with two-chain antibodies and 12 structures of proteins in complexes with 

one-chain antibodies. 

 The flowchart describing the construction of the benchmark datasets is shown in Figure 1. 

Steps from 1 to 4 relate to dataset #1; steps 1-6 relate to dataset #2. 

Step 1 - crystal structures of protein antigens of length ≥30 amino acids at a resolution 

≤ 4Å in complex with antibody fragments containing variable regions (Fab, VHH, Fv, or scFv 

fragments) were collected from the Protein Data Bank (PDB) [41]. Structures in which the 

antibody binds antigen but involves no CDR residues have been excluded from the analysis; 

there were four such structures [PDB: 1MHH, 1HEZ, 1DEE, 1IGC]. If a structure contained 

several complexes in one asymmetric unit and there was no structural difference observed 

between these complexes, only one complex was selected. In this way 166 structures 

containing 187 antibody-protein complexes were selected: 24 complexes were formed by 

one-chain antibody fragments and 163 complexes by two-chain antibody fragments.  

Step 2 - all antigen protein chains were structurally aligned to one another using the CE 

algorithm [58]. Two protein chains were considered similar if all the following conditions applied: 
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(i) rmsd ≤3Å, (ii) z-score ≥4.0, (iii) number of residue-residue matches relative to the length of 

the longest chain ≥80%, (iv) sequence identity in the structural alignment (not considering gaps) 

≥80%. The z-score takes into account overall structural similarity and number of gapped 

positions. Two protein molecules were considered similar if each chain in one protein had a 

similar chain in another protein. Figure 2 demonstrates how the last two parameters, number of 

matches and sequence identity in the structural alignment, are defined.  

 The structural alignment rather than sequence alignment was used because protein 

structure is more conserved than sequence, and there can be expected regions in proteins with 

low sequence similarity that cannot be aligned by sequence alone. The structural alignment also 

avoids considering two proteins as similar if they have similar sequences but different structures 

(possible over short regions). The threshold values were chosen empirically based on previous 

experience working with the CE algorithm. As a result, the chosen threshold values separated 

human and bird lysozymes (61% sequence identity) and neuraminidases of different influenza 

virus strains, H3N2 and H11N9 (47% sequence identity).  

 Step 3 - 35 proteins were orphans represented by only one 3D structure. Of the 

remaining 27 proteins represented by more than one 3D structure, the structure with the best 

resolution was selected as the representative structure. The final representative dataset 

contained 62 antigens [see Additional file 1], 52 of which were one-chain antigen proteins. 

 Step 4 - for each protein, epitopes inferred from the 3D structures of antibody-protein 

complexes were mapped onto the representative structure of the protein. First, epitope residues 

were calculated for each complex structure using one of the aforementioned epitope definitions. 

Second, epitope residues defined for the represented structures were mapped onto the 

representative structure based on the structure alignments. For example, the hemagglutinin 

HA1 chain of influenza A virus was represented by six 3D structures of the protein in complexes 
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with Fab fragments of antibodies HC45 [PDB:1QFU], BH151 [PDB:1EO8], HC63 [PDB:1KEN], 

and HC19 [PDB:2VIR, 2VIS, 2VIT]. Figure 3 illustrates a representative structure [PDB:1EO8] of 

hemagglutinin HA1 upon which epitopes are mapped having been inferred from six complex 

structures. In this way, epitopes inferred from 187 structures of antibody-protein complexes 

were mapped onto the 62 representative protein structures. The resulting dataset is denoted 

dataset #1. Data on mapped epitope residues are available upon request.  

Step 5 - to study the properties of individual epitopes and their prediction a dataset of 

representative epitopes, dataset #2 derived from 3D structures of antibody-protein complexes 

defining different epitopes was constructed. An important question to consider is how to define 

individual epitopes yet avoid bias by over-presentation of particular epitopes? For example (Fig. 

3), while HC45 (blue) and BH151 (magenta) epitopes overlap, neither HC63 (green) nor HC19 

(red) epitopes overlap, they are separated on the protein surface. Nevertheless, HC45 and 

BH151 epitopes share residues (orange in Fig. 3), as do HC63 and HC19 epitopes (yellow in 

Fig.3). Are HC45 and BH151 epitopes similar or different? This question is answered by 

considering the degree of overlap. 

 Two epitopes are deemed similar if, in addition to the aforementioned criteria for epitope 

definition, they belong to similar protein chains and have >75% residues in common for both 

epitopes. A cut-off value of 75% for epitope similarity was chosen empirically. Thus, the HC45 

and BH151 epitopes on influenza A virus hemagglutinin HA1 (Fig. 3) share 14 residues, that 

make up 74% and 93% of the size of HC45 and BH151 epitopes, respectively. A cut-off on 

epitope overlap of less than 75% would define HC45 and BH151 epitopes as similar even 

though they are known to be different. HC45 and BH151 are antibodies from different germ-

lines with variable domains sharing only 56% sequence similarity, their H3 CDR regions adopt 

distinct conformations and these antibodies are tolerant to different mutations in hemagglutinin 

[59]. Another example, X5 and 17B epitopes of gp120 share 75% of their residues yet X5 and 
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17B antibodies are from different genes [60]. A cut-off value for epitope similarity equal to or 

less than 75% would erroneously define X5 and 17B epitopes as similar. Conversely, a cut-off 

value of 80% would make epitopes inferred from different structures of the same antibody-

protein complex dissimilar. For example, the H57 epitope of T cell receptor N15 is inferred from 

two complex structures of a single crystal asymmetric unit ([PDB:1NFD], complexes (D)-(HG) 

and (B)-(FE), where the letters denote protein chain identifiers) would be dissimilar.  

Given a 75% empirical cut-off for epitope similarity, epitopes inferred from structures of 

complexes with two-chain antibody fragments were divided into 44 singletons and 26 groups; 

epitopes inferred from structures of complexes with one-chain antibody fragments were divided 

into ten singletons and two groups.  

Step 6 - for each group of similar epitopes, the representative 3D structure of the 

antibody-protein complex was selected based upon the following preferences. First, the 

structure with no or a minimal number of heteroatoms (excluding water) and other protein 

chains in the interface (i.e., separated from any atoms of both antigen and antibody by ≤4Å 

distance) was preferred. Second, preference was given to the structure with the largest epitope, 

i.e., maximum number of epitope residues. Third, the structure with the best resolution ≤2.5Å 

was preferred. Dataset #2 of representative structures of antibody-protein complexes 

(representative epitopes) consisted of 70 structures of proteins in complexes with two-chain 

antibody fragments and 12 structures of proteins in complexes with one-chain antibody 

fragments. 

Web-servers performance evaluation 

Using the benchmark datasets introduced above we evaluated eight recently-developed and 

publicly available web-servers. The servers use different methods yet all have the goal of 
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predicting either B-cell epitopes, or more generally protein-protein binding sites. The servers are 

listed in Table 1. Any reference in the text to the method actually means the server which 

implements that method, e.g., the DOT method running on the ClusPro server is called 

ClusPro(DOT).  

 The methods fall into two categories: 

• Scale-based methods - each protein residue is assigned a value reflecting the 

probability of that residue being part of the protein interface or epitope. DiscoTope, 

PIER, ProMate and ConSurf fall into this category. 

• Patch prediction and protein-protein docking methods – each protein residue is 

predicted to be part of a surface patch of residues defining the protein interface or 

epitope. DiscoTope, ProMate, CEP, PPI-PRED, ClusPro(DOT), and PatchDock fall 

into this category.  

Two methods, DiscoTope and ProMate, fall into both categories since they predict 

patches and assign score values to each protein residue. 

The evaluation of the methods was performed as follows. First, the scale-based methods 

were analyzed on how well the residue score values discriminate epitope versus non-epitope 

residues using dataset #1. Further, performance of all methods was evaluated on their ability to 

recognize representative epitopes from dataset #2. The first step is obviously not essential; it 

was performed as an example of the application of dataset #1 that can be used for future 

methods development and for revealing properties of epitope residues beyond the fact that 

epitopes are sites on the protein surface. 
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Scale-based methods: score value distributions 

DiscoTope, PIER, ProMate and ConSurf assign to each protein residue a score reflecting the 

probability of that residue being a part of the protein interface or epitope. Details are provided in 

the Methods section. For the analysis of epitope residues versus non-epitope residues we used 

dataset #1, that is, representative antigen structures with epitopes mapped onto them. Here an 

epitope residue is an antigen residue known to be part of an epitope in any complex of this 

antigen with any antibody. Conversely a non-epitope residue implies an antigen residue which is 

not known to be part of a structural epitope. To simplify the calculation proteins with epitopes 

located on more than one protein chain were discarded from the analyses (there were 10 such 

proteins). As a result 52 protein antigens were analyzed [see Additional file 1].  

 The score distributions for epitope, non-epitope and all protein residues were calculated 

for each method and are shown in Figures 4-7. Distributions taking into account only surface 

residues were similar for all methods (results not shown). The definition of a surface residue is 

given in the Methods section. 

DiscoTope, ProMate and ConSurf scores discriminate epitope versus non-epitope and 

versus all protein residues, while PIER and ConSurf confidence scores do not. Thus, as one 

can see in Figure 4, DiscoTope discriminates epitope residues (x̄ = -10.2, s=5.4, number of 

residues N=1,364) from non-epitope residues (x̄ = -13.3, s= 6.3, N=9,713) (p<0.001) and all 

antigen residues (x̄ = -13.0, s=6.3, N=11,077) (p<0.001). These distributions are significantly 

different (p<0.001) regardless of the epitope definition used. The ConSurf conservation score 

also discriminates epitope residues (x̄ = 0.273, s=1.050, N=1,119) versus non-epitope residues 

(x̄ = -0.049, s=0.987, p<0.001) and versus all antigen residues (x̄ = -0.007, s=1.00, N=8,684, 

p<0.001) (Fig. 5). The same was true for epitope vs. all surface residues. Further, the 

confidence level did not change when the definition of surface residues and/or epitope residues 

was changed (data not shown). However, if only residues with ConSurf confidence score values 



 14

were considered, no significant difference between epitope and other protein residues was 

observed (epitope residues: x̄ =0.197, s=0.539; non-epitope residues: x̄ =0.194, s=0.556, 

p>0.05). For ProMate mean scores for epitope residues (x̄ =52.8, s=25.4, N=1,363) were 

significantly higher than for all antigen residues (x̄ =46.5, s=28.1, N=11,074) or non-epitope 

residues or all surface residues (p<0.001) (Fig. 6). The PIER score does not discriminate 

epitope versus other antigen residues (epitope residues: x̄ =11.9, s=11.4, N=1,363; non-epitope 

residues: x̄ =12.6, s=13.7; N=8,221, p>0.05) (Fig. 7).  

These results suggest that epitope residues are less conservative according to the 

ConSurf evolutionary conservancy scores than protein surface residues in general at a 99.9% 

confidence level (p<0.001). PIER, which is trained on 3D structures of all protein-protein 

complexes available in the PDB, could not distinguish epitopes from the rest of the protein 

surface. One possible explanation of this failure is that epitope residues do share some 

properties with residues having transient non-obligate hetero-interactions with other proteins. 

ProMate is trained using such complexes [55].  

 

Criteria and dataset used in methods evaluation 

There is no commonly acceptable standard for evaluating binding site prediction 

methods. Some authors measure performance on a per protein bases, measuring statistics 

across the dataset [49], while others measure performance on a per residue basis [54]. Some 

authors report sensitivity and specificity and measure the performance from the area under the 

ROC curve [49], while others consider only the sensitivity and positive predictive values and 

measure the method performance from the relative number of successful predictions in the test 

dataset [53].  
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Approaching the task of evaluation and comparison of different methods, we 

encountered a number of questions. How can we compare scale-based methods with patch 

prediction and docking methods? DiscoTope and ProMate predict one patch per protein, while 

other methods predict several patches, how can these be compared? Using a score value 

assigned by ProMate, DiscoTope, or ConSurf to a residue, all epitopes in the protein are taken 

into account, so can we say that the method predicts one epitope per protein? Is not the direct 

comparison of protein docking methods (ClusPro (DOT), PatchDock) versus patch-based 

prediction methods (DiscoTope, ProMate, CEP, PPI-PRED) questionable since the former 

methods are based on optimization of an interaction energy function, while the latter depend on 

training? Finally, docking methods require knowledge of the structures of both interacting 

proteins, antigen and antibody, while binding site prediction methods are based on the structure 

of the protein antigen alone and do not require knowledge of the antibody structure. Is this a fair 

comparison? Being aware of these questions and limitations, we applied various evaluation 

criteria in an attempt to provide a thorough and fair comparison of the methods.  

 The evaluation was performed on the dataset of representative epitopes, assuming any 

antigen residue which is not a part of a considered epitope is part of a non-epitope. We didn’t 

discard non-epitope residues, which we know belong to some other epitope in the protein, 

because we assumed that a prediction program will predict an epitope in an antigen for which it 

doesn’t have any additional information except its sequence and structure—this is how all 

evaluated methods were constructed. The analysis was performed using the representative 

epitopes from dataset #2 that were inferred from structures of one-chain (monomer) antigens in 

complexes with two-chain antibody fragments. There were 59 such epitopes in 48 antigens 

(Table 2).  

The following parameters were used to evaluate the methods: 
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Sensitivity (recall or true positive rate (TPR)) = TP / (TP + FN) - a proportion of 

correctly predicted epitope residues (TP) with respect to the total number of epitope residues 

(TP+FN).  

Specificity (or 1- false positive rate (FPR)) = 1- FP / (TN + FP) – a proportion of 

correctly predicted non-epitope residues (TN) with respect to the total number of non-epitope 

residues (TN+FP).  

Positive predictive value (PPV) (precision) = TP / (TP + FP) – a proportion of correctly 

predicted epitope residues (TP) with respect to the total number of predicted epitope residues 

(TP+FN). 

Accuracy (ACC) = (TP + TN) / (TP + FN + FP + TN) – a proportion of correctly 

predicted epitope and non-epitope residues with respect to all residues. 

Area under the ROC curve (AUC). A ROC curve is a graph representing a dependency 

of TPR versus FPR, or sensitivity versus specificity. The AUC measure is a widely used 

measure for immunoinformatics and bioinformatics methods; it has also been recommended for 

methods comparison in our recent report [25]. The AUC gives the general performance of the 

method; it is “equivalent to the probability that the classifier will rank a randomly chosen positive 

instance higher than a randomly chosen negative instance” [61]. 

Success rate – the number of epitopes from the dataset that were successfully 

predicted. While the AUC is a convenient and commonly used measure in immunoinformatics 

since many protein-protein binding site prediction methods, as well as three methods evaluated 

in the current work, ProMate, PPI-PRED, and CEP, used success rate as a measure of their 

performance, we considered it necessary to also calculate the methods success rates. While 

this measure is easily and naturally interpretable, it requires us to define the successful 
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prediction and that can be done in many different ways. For this reason, many scientists try to 

avoid using this measure.  

The statistical significance of a prediction, that is, the difference between observed and 

expected frequencies of an actual epitope/non-epitope residue in the predicted 

epitope/non-epitope, was determined by Fisher’s exact test (right-tailed). The prediction was 

considered significant if the significance level was ≥95%, that is, the P-value was ≤0.05. 

The above parameters were applied in evaluating the methods as follows:  

(1) For the scale-based methods, ProMate, DiscoTope, ConSurf, and PIER, by varying 

the threshold values for score values classifying epitope residues from non-epitope residues, 

the AUC values have been calculated for each epitope.  

(2) Success rates for all methods were calculated on a per protein bases taking into 

account one epitope per protein predicted with the highest significance. Such an approach 

assumes that if the epitope in a protein was successfully predicted, the prediction for the protein 

is successful. Criteria used for definition of successful prediction are discussed further.  

(3) Patch prediction methods and protein-protein docking methods fall in the category of 

discrete classifiers, that is, they classify a residue as an epitope or non-epitope residue with no 

score assigned. Therefore, a ROC curve cannot be generated for these methods, only the AUC 

value can be estimated. Other statistics have also been obtained for these methods by 

averaging statistical values over epitopes and then calculating the overall statistical values over 

epitope and non-epitope residues in the dataset.  

 

 



 18

Prediction of individual epitopes 

The results for each method in predicting 59 representative epitopes are given in Tables 2, 3 

and supplementary Table 2 [see Additional file 2]. For scale-based methods only the AUC 

values were computed (Table 3), while for patch prediction and docking methods all other 

statistics were produced (Table 2 and supplementary Table 2 [see Additional file 2]).  

DiscoTope and ProMate predict only one epitope per protein. ClusPro and PatchDock 

rank predicted models starting from the model with the best score. For these methods, the first 

(by rank) prediction was considered. If it was not significant (p>0.05), the next by rank 

significant prediction (not exceeding the 10 best predictions) was reported in Table 2. Since the 

number of epitopes predicted by CEP in a protein varies (Table 2) and they are not ranked, the 

average prediction was reported for each epitope. More detailed statistics on the prediction 

results is provided in supplementary Table 2 [see Additional file 2]. 

No one epitope was predicted by all methods (Table 2). Some epitopes, for example, 

HyHEL-8 on HEL [PDB:1NDG] and 8-18C5 on myelin oligodendrocyte glycoprotein 

[PDB:1PKQ], were predicted by all methods except CEP (Table 2). Two epitopes, cetuximab on 

EGFR [PDB:1YY9] and 7E2C50S on cytochrome c oxidase [PDB:1AR1], appeared to be 

difficult to predict; they could probably be predicted using the ConSurf average score in 

combination with a patch generation method. The extracellular region of EGFR [PDB:1YY9] is a 

large (624 aa) loosely-packed multi-domain protein with a lot of loops and hence epitope 

recognition appears difficult. Similarly, recognition of epitopes on subunit II of cytochrome c 

oxidase [PDB:1AR1] appears problematic because the protein possesses long protruded α-

helixes.  

The lower specificity of CEP and DiscoTope (supplementary Table 2 [see Additional file 

2]) results from these methods predicting larger epitopes (average size of predicted epitope by 
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CEP is 40 residues, DiscoTope (-7.7) – 43 and DiscoTope (-10.5) – 80 residues) in comparison 

with other methods. The average size of predicted epitope size for PatchDock is 29 residues, 

ClusPro (DOT) is 17 residues, and PPI-PRED is 32 residues. The size of actual epitopes in the 

dataset varies from 4 to 52 residues (x̄ = 16, s = 6). However, it should be emphasized that if 

the most of the methods considered were designed to predict an epitope as a whole single 

entity, DiscoTope focuses on the prediction of individual epitope residues that can be part of 

several different epitopes in the same protein. Therefore, the average size of the epitope 

predicted by DiscoTope is large; moreover, the predicted epitope residues can be located too 

far from each on the protein surface to form a single epitope.  

Overall performance of each method 

The overall performance of each method have been compared first using average AUC values 

for all methods and then calculating all other statistics for patch prediction and protein-protein 

docking methods. Both comparisons were made on different subsets of representative epitopes 

from dataset #2. 

Calculating AUC values for all methods, we discarded from the analysis the proteins for 

which any method didn’t produced a result (ConSurf, ProMate, and ClusPro (DOT) were not 

able to predict epitopes for several proteins, see Methods). The final subset contained 42 

epitopes from Table 2 of which 21 epitopes were not used for DiscoTope training. All other 

methods didn’t use any epitopes for training.  

AUC values averaged on subsets of 42 and 21 epitopes are shown in Figure 8. ConSurf, 

DiscoTope, PPI-PRED and docking methods, when the 10 best models were considered, 

demonstrated average AUC values above 0.6, that is, poor or mediocre performance. 

PatchDock was the best, giving an AUC of 0.69. All other methods performed close to random 
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(Fig. 8). DiscoTope gave AUC values of 0.65 and 0.62 on all representative epitopes and those 

that were not used by the method for training, respectively. When DiscoTope performance was 

evaluated by the authors of the method [49], it gave an AUC value of 0.71 averaged over the 

five evaluation sets used for cross-validation.  

For patch prediction and docking methods, to avoid the problematic comparison of 

methods predicting one epitope per protein with those that predict several epitopes, all epitopes 

from proteins with more than one epitope have been removed from dataset #2. Epitopes from 

proteins for which any method did not produce the prediction have also been discarded. The 

following statistics were calculated on the resulting subset of epitopes.  

First, FP, FN, TP, and TN values were summarized for the whole pool of epitopes, and 

sensitivity, specificity, accuracy, PPV, and AUC values calculated for each method (Table 4, 

upper part). AUC values obtained in this way were close to those demonstrated in Fig. 9. The 

best performers were docking methods PatchDock and DOT when the top ten models were 

considered, giving AUC values of 0.66 and 0.69, respectively (Table 4). Among the methods 

producing one prediction per protein, DiscoTope was rated the best by with an AUC of 0.60. 

Second, statistics were averaged over epitopes (Table 4, lower part). The overall 

performance was poor for all methods. The best performance demonstrated by docking 

methods (when the 10 best models were considered) was 41% PPV (precision) and 46% 

sensitivity (recall) for ClusPro(DOT) and 30% PPV and 42% sensitivity for PatchDock. Among 

the methods producing one prediction per protein, DiscoTope was rated the best by sensitivity 

(43% sensitivity at 18% PPV) and ClusPro(DOT) first model by PPV (25% sensitivity and 25% 

PPV) (Fig. 9).  

Comparison of success rates 



 21

Since patch prediction methods used in the current analysis used success rate as a 

performance measure, we additionally calculated the methods success rate on the subset of 42 

epitopes used for overall methods comparison above. The prediction of each epitope was 

deemed successful if the AUC value was above a threshold value of 0.6 or 0.7. The results are 

presented in Fig. 10. 

The proportion of epitopes predicted with an AUC≥0.6 for the scale-based methods 

(PIER, ConSurf, ProMate, and DiscoTope) and the methods providing only one prediction per 

protein (ProMate, DiscoTope, PPI-PRED first prediction, PatchDock first model and 

ClusPro(DOT) first model) was lower than 50% except for ConSurf and DiscoTope methods, 

which showed success rates of approximately 60% (white bars in Fig. 10). Among the methods 

predicting several epitopes per protein (PPI-PRED, PatchDock, ClusPro(DOT), and CEP) 

PatchDock performed best with >75% successful predictions at an AUC≥0.6 and 55% at an 

AUC≥ 0.7 (Fig. 10).  

PPI-PRED predicted 75% of protein-protein binding interfaces successfully, with a 

specificity over 50% and sensitivity over 20%, values previously used to claim success [53]. The 

ProMate’s authors reported a success rate for protein-protein binding site prediction of 70% 

[55], while application of the criteria used in PPI-PRED gave ProMate’s success rate as 36% 

[53]. According to our data [see Additional file 2], the prediction with an AUC≥0.6 corresponded 

to a significant prediction (P-value <0.05) at a sensitivity >30%. Using an AUC≥0.6 as a criterion 

of successful prediction, PPI-PRED gave 60% and ProMate 35% successful predictions, 

respectively (Fig. 10). Neither ProMate nor PPI-PRED used antibody-protein interfaces for their 

methods development; nevertheless, they predicted epitopes with a success rate comparable to 

those for prediction of protein interfaces.  
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Epitopes and other protein-protein interfaces indeed share many properties. Thus, 

Blythe [62] compared 57 protein-protein binding interfaces of 44 proteins from the dataset used 

for ProMate development [55] with epitopes and paratopes inferred from X-ray structures of 37 

complexes calculating the following interface properties: amino acid composition, 

hydrophobicity by the Eisenberg’s scale [63], amino acid contribution to form inter-molecular 

hydrogen bonds, residue evolutionary conservancy, and several geometrical parameters, such 

as planarity and complementarity of interfaces. Epitopes and non-obligate heterodimer 

interfaces were very similar considering all the aforementioned properties except residue 

conservancy; epitope residues were more variable than heterodimer interfaces [62]. The current 

work additionally demonstrates that, on average, epitope residues are significantly less 

conservative than protein surface residues. Indeed, protein-protein interaction sites are under 

evolutionary pressure to be more conserved than protein surface residues on average. While 

antibody-antigen interactions are not under evolutionary pressure, they are under the selection 

pressure from the host immune system. This selection pressure is assumed to cause 

polymorphisms in pathogens and to explain the variability of immune epitopes. 

 

Conclusions 

Benchmark datasets for use in B cell structural epitope prediction have been constructed and 

made available. Using these benchmark data, eight publicly available web servers and their 

associated methods were evaluated. Several schemes for methods evaluation were considered.  

The overall performance was poor for all methods and did not exceed an average AUC 

of 0.7 and 40% positive predictive value (precision) at 46% sensitivity (recall). The values of the 
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area under the receiver operating characteristic (ROC) curve for the evaluated methods were 

about 0.6 for ConSurf, DiscoTope, and PPI-PRED (when all predictions were considered) and 

above 0.65 but not exceeding 0.7 for protein-protein docking methods when the best of the top 

ten models for the bound docking were considered. Certainly a best case, since under real 

conditions many more models would be presented. Other methods, PIER, ProMate (both 

scores and patch prediction), CEP, PPI-PRED first patch, and the first models of docking 

methods, performed close to random. Despite the fact that structural epitopes and protein-

protein non-obligate transient heterodimer interfaces share many properties, protein-protein 

binding site prediction methods were poor epitope predictors.  

When the top ten models and bound docking were considered, the docking methods 

performed the best, especially PatchDock, where success can be explained by application of 

the CDR filter, which the DOT algorithm does not use. Independent evaluation of PPI-PRED 

and four docking algorithms (DOT, PatchDock, ZDOCK, and webGRAMM) made by Martin 

Blythe [62] and not available to us until the peer-reviewing stage of the manuscript agrees with 

the results presenting in the current work. Using the Matthew’s Correlation Coefficient (MCC), 

Blythe measured the correlation between predicted and structural epitopes and paratopes 

inferred from 37 antibody-protein complexes. For the first models, all evaluated methods 

demonstrated near random correlations. Likewise, when the top ten models for each complex 

were considered, low and negative MCC values prevailed over positive values for all algorithms 

except PatchDock. Further experiments demonstrated that using the CDR filter may improve 

the prediction. Thus, using predefined CDRs for antibodies, the DOT method significantly 

improved and showed MCC values comparable with those for PatchDock [62].  

Obviously, unbound docking would have more practical value for epitope prediction than 

bound docking. However, the performance of unbound docking for antibody-antigen 

interactions, as was shown by the authors of PatchDock, was unsatisfactory in comparison to 
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bound docking and other protein-protein interaction methods [64]. While the bound docking 

considered in this work has no practical value for epitope prediction, it needs to be 

benchmarked to further improve unbound docking algorithms and tune them for modeling 

antibody-antigen complexes. 

Currently the problem of B-cell epitope prediction is far from solved: structure-based 

method for prediction of discontinuous epitopes perform on the same level as sequence-based 

methods for prediction of continuous epitopes giving the area under the receiver operating 

characteristic curve (AUC) values of approximately 0.60 [25].  

Three definitions of an epitope inferred from the X-ray structure of antibody-protein 

complexes were considered, but this made no significant difference to the predictions. Hence, 

we finally considered an epitope residue as the protein antigen residue for which any atom is 

separated from any antibody atom by a distance ≤ 4Å.  

Currently, each method requires writing a separate parser taking into account different 

representations of the output data. There is a need to develop a common format for output data 

generated by both scale-based and patch generation tools that is easily interpreted by both a 

human and computer.  

Given these shortcomings and current success rates, how can epitope prediction be 

improved? The availability of larger datasets containing only well-defined epitopes inferred from 

X-ray structures of antibody-protein complexes, which are then used for training, would help. 

This will come over time as the PDB continues to grow at a rapid rate. This need, in the context 

of continuous epitope prediction, has been noted by others [25]. The performance of docking 

algorithms might be improved by tuning them specifically for antibody-antigen complexes. 

Existing B-cell epitope prediction methods utilize only a few features characterizing epitopes 

(amino acid propensities, residue solvent accessibility, spatial distribution, and inter-molecular 
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contacts). Therefore, another possible way for improving the prediction would be to utilize more 

features that discriminate epitopes from non-epitopes, for example, the evolutionary 

conservation score. This assumes that an epitope is indeed a discreet entity based upon what 

we know about proteins today. Perhaps the more fundamental question is whether it makes 

sense to consider a B-cell epitope a discrete feature of a protein at all? Time will tell as more X-

ray structures on antibody-protein complexes become available.  

 

Methods 

Surface residue is defined as a protein residue with a relative ASA of ≥1% as calculated by the 

program NACCESS. This cut-off was previously used by Jones & Thornton [46]. 

Data sets compilation. 169 structures of protein antigens (length >30 amino acids) in complex 

with antibody fragments have been manually collected from the PDB [41] of January 2006 at a 

resolution ≤4Å. Every structure has been manually curated within the IEDB database [1] and 

inspected using the EpitopeViewer visualization tool developed by the authors [65]. Structures 

in which the antibody binds antigen but involves no CDR residues have been excluded from the 

analysis; there were four such structures [PDB: 1MHH, 1HEZ, 1DEE, 1IGC]. If a structure 

contained several complexes in one asymmetric unit (there were 46 such structures in 165) and 

the authors of the structure observed no structural difference between these complexes, only 

one complex was selected—those that were specified as a reference complex by the authors of 

the article describing the structure (primary citation in the PDB); there were 18 such structures 

out of 46. If the authors didn’t provide this information, all complexes in the structure were 

considered for analysis. The authors of a few structures clearly stated in their papers that 

antibody-protein contacts in the complexes were different: [PDB: 1MLC, 1NFD, 1OB1, 1P2C, 
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1QFW]. This initial curation has performed in order to correctly assign the protein-antibody 

complexes and decrease the number of individual complexes analyzed from 226 to 187 from a 

total of 169 structures. A total of 24 complexes were formed by one-chain antibody fragments 

and 163 complexes by two-chain antibody fragments. Alignment of protein chains was 

performed using the CE algorithm [58].  

Web-servers evaluation. The publicly available web-servers implementing 3D structure-based 

methods for protein-protein binding site and/or discontinuous epitope prediction were identified 

through PubMed and web searches. Eight web-servers were selected for evaluation (Table 1). 

The servers were tested between June and September of 2006, and results reflect the method 

implemented by the servers at that time. In all cases the default parameters provided by each 

server were used. 

PPI-PRED provides up to three surface patches predicted as putative binding sites. The 

batch mode for data submission was used. 

CEP provides residues forming the putative conformational epitopes (there could be 

more than 20 predictions per protein antigen). CEP includes residues with accessibility less than 

25%. In this work, only residues with accessibility more than 25% were considered as a part of 

the epitope.  

DiscoTope assigns a score to each protein residue that reflects the probability of that 

residue being part of an epitope and also provides a list of residues included in the predicted 

epitope (patch). DiscoTope predicts one epitope per protein.  

ProMate returns results in four different formats. In this work, the two formats provided 

for each residue patch/non-patch identifier and residue interface probability were used. The 

batch version of ProMate, MultiProMate, was used.  



 27

PIER returns a list of residues with assigned PIER index values indicating how likely a 

particular residue is to be involved in protein interface formation, with higher values meaning 

higher probability. A PIER index above 30 indicates a likely protein-protein binding interface 

residue, and below zero an unlikely interface residue.  

ConSurf calculates a conservation score for each protein residue based on a 

PSI-BLAST alignment of unique homologous sequences found in UniProtKB/Swiss-Prot [66]. 

For each protein residue, ConSurf provides a normalized score, so that the average score for all 

residues in the protein is zero, and the standard deviation is one. The conservation scores 

calculated by ConSurf are a relative measure of the evolutionary conservation at each residue 

of the target protein. The lowest scores represent the most conserved positions in the protein. 

ConSurf provides output data in different formats. In this analysis the "Amino Acid Conservation 

Score" output files were used. These files provide, together with normalized conservation score 

for each residue, residue color values (scale of 1-9) and confidence intervals for the 

conservation score and color (for the Bayesian method of calculation which is used by default). 

Amino acid positions that are assigned confidence intervals that are too large to be trustworthy 

are marked in the output files. Both all residues with conservation scores and residues for which 

scores were confident (not marked in the output files of the ConSurf server), i.e., a confident 

interval assigned to the score was less than 50% [56], were used in this study.  

ClusPro running the DOT program returns the ten best models as one PDB formatted 

file re-numerating protein chains, residues and atoms. DOT is limited to proteins not exceeding 

3,700 atoms.  

PatchDock returns up to 2,000 models each as a separate PDB formatted file and 

provides the option to retain the 100 best models in one archive file. The ten best (by model 

score) were used in the current analysis. Also the filter for antigen-antibody interactions 
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provided by PatchDock was used. That is, surface patches intersecting the CDR regions of the 

antibody. CDRs are detected by aligning the sequence of the given antibody to a consensus 

sequence from a library of antibodies [64]. 

ClusPro and PatchDock differ from the other servers tested by providing protein-protein 

docking. To use these servers the user needs to provide the structure of the antibody along with 

the antigen structure. We used the structures of protein antigen and antibody from the same 

complex, hence, only bound docking was considered. As was shown by the authors of the 

method, PatchDock bound docking substantially out-performed unbound docking [64].  

The AUC values for scale-based methods were calculated using the algorithm of Tom 

Fawcett [61]. For discrete classifiers, that is, methods producing the only point on the ROC plot 

with coordinates {x; y}, the AUC was calculating as 0.5 * (1-x+y). 

Molecule images were produced using the WebLabViewer software (Accelrys Inc.). 

 

Abbreviations 

CDR – Complementary Determined Region of the Antibody. 

Fab – antigen-binding fragment of antibody that includes one complete light chain paired with 

one heavy chain fragment containing the variable domain and the first constant domain. 

VHH – antigen-binding fragment of the antibody that includes the variable domain of the heavy 

chain. 

Fv – antigen-binding fragment of antibody that includes variable domains of heavy and light 

chains. 
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scFv - antigen-binding fragment of the antibody that includes the covalently linked variable 

domains of the heavy and light chains. 

TCR – T Cell receptor. 

x̄ – sample arithmetic mean. 

s – sample standard deviation. 

TP, FP, TN, FN – true positives, false positives, true negatives, and false negatives, 

respectively.  

ROC – Receiver Operating Characteristics. 

AUC – area under the ROC curve. 
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Figure Legends 

Figure 1. Flowchart for building benchmark datasets. 

Figure 2. Hypothetical example of the structural alignment of proteins (A) (sequence 

AVCQYWC) and (B) (sequence ACYARTYC). Number of residue-residue matches=5, number 

of residue-residue matches relative to the length the longest chain = 63% (5/8), sequence 

identity = 80% (4/5). 

Figure 3. Two orthogonal views of a representative structure, influenza A virus 

hemagglutinin HA1 chain [PDB:1EO8]. Chain A is shown in light gray upon which are 

mapped epitope residues inferred from six protein structures in complexes with antibody 

fragments: HC45 Fab [PDB:1QFU] (blue), BH151 Fab [PDB:1EO8] (magenta), HC63 Fab 

[PDB:1KEN] (green), HC19 Fab [PDB:2VIR, 2VIS, 2VIT] (red). The hemagglutinin HA2 chain is 

shown in cyan. Residues common to HC45 and BH151 epitopes are shown in orange; residues 

common to HC63 and HC19 epitopes are shown in yellow; residue Tyr98 which is a part of 

HC19 epitope inferred from structure 2VIR but not from 2VIS and 2VIT structures is shown in 

black; The HC19 epitope residue Thr131 which is mutated to Ile in the 2VIS structure is shown 

in dark red. The HC19 epitope residue Thr155 which is mutated to Ile in 2VIT structure is shown 

in violet. 

Figure 4. Distributions of DiscoTope scores for epitope, non-epitope and all protein 

residues. 

Figure 5. Distribution of ConSurf scores for epitope and all protein residues. For the 

definition of confidence score see the Methods section. 

Figure 6. Distribution of ProMate scores for epitope, non-epitope and all protein residues. 
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Figure 7. Distribution of PIER scores for epitope, non-epitope and all protein residues. 

Figure 8. Average AUC values for each method. Vertical bars show one standard deviation. 

Figure 9. Overall methods performance measured as average sensitivity and PPV values. 

Figure 10. Proportion of successfully predicted epitopes. 
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Table 1. Servers evaluated in this work 

Server name Method type Training dataset Reference 

CEP (Conformational 
Epitope Prediction) 

Discontinuous epitope prediction based on residue 
solvent accessibility and spatial distribution. No training set.  [48] 

DiscoTope 
Discontinuous epitope prediction based on amino acid 
statistics, residue solvent accessibility and spatial 
distribution. 

75 structures of antibody-antigen complexes. [49] 

ProMate Protein-protein binding interface prediction based on 
significant structural and sequence interface properties. 

Manually curated; 57 protein involved in 
heterodimeric transient interactions (excluding 
antigen-antibody complexes).  

[55] 

PIER (Protein IntErface 
Recognition) 

Protein-protein binding interface prediction based on local 
statistical properties of the protein surface derived at the 
level of atomic groups. 

490 homodimeric, 62 heterodimeric and 196 
transient interfaces (excluding antigen-antibody 
complexes). 

[54] 

PPI-PRED (Protein-Protein 
Interface Prediction) 

Protein-protein binding interface prediction based on 
significant structural and sequence interface properties. 

Manually curated; 180 proteins from 149 
complexes both obligate (114) and transient (66).  [53] 

ConSurf 
Mapping of phylogenetic information (sequence 
conservation grades) on to the surface of proteins with 
known 3D structure. 

No training set.  [56] 

ClusPro (DOT program) Rigid-body protein-protein docking based on the Fast-
Fourier Transform correlation approach. No training set.  [50] 

[51] 

PatchDock Rigid-body protein-protein docking based on local shape 
feature matching. No training set.  [52] 
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Table 2. Results for representative epitope prediction by patch and protein docking methods 

    ProMate 
PPI-PRED 

(1
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PPI-PRED 
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2ADF:A 2adf_A_HL 196 15 0 0 0.8 0.67 0.8 0.67 0 0 4 0.4 0.29 0.67 0.5 1 0.67 0.5 7 0.27 0.14 0.07 0.11 - 

2ADF:A 1fe8_B_IM 196 20 0 0 0.3 0.33 0.3 0.33 0 0 2 0.4 0.38 0.63 0.57 1 0.63 0.57 7 0.32 0.22 0.15 0.33 * 

1AFV:A 1afv_A_HL 151 14 0 0 0.57 0.15 0.57 0.15 0.43 0.25 1 0.43 0.25 0 0 1 0 0 6 0.46 0.18 0.43 0.1 - 

1BGX:T 1bgx_T_HL 832 52 0 0 0.02 0.01 0.33 0.11 0.79 0.77 1 0.79 0.77 NA  NA   17 0.08 0.1 0.37 0.16 - 

1E6J:P 1e6j_P_HL 210 12 0 0 0.08 0.03 1 0.41 0 0 9 0.42 0.24 0 0 7 0.42 0.26 5 0.33 0.08 0 0 - 

1EGJ:A 1egj_A_HL 101 11 0.27 0.27 0.64 0.44 0.64 0.44 0.27 0.11 1 0.27 0.11 0.73 0.8 1 0.73 0.8 1 1 0.13 0.91 0.16 * 

1FSK:A 1fsk_A_CB 159 17 0 0 0.59 0.17 0.59 0.17 0.59 0.31 1 0.59 0.31 0 0 8 0.47 0.47 6 0.12 0.11 0.76 0.22 * 

1H0D:C 1h0d_C_BA 123 17 0.65 0.85 0.06 0.05 0.59 1 0 0 10 0.53 0.5 0.59 0.56 1 0.59 0.56 5 0.44 0.16 0.35 0.13 * 

1I9R:A 1i9r_A_HL 146 18 0 0 0 0 0 0 0.17 0.14 3 0.78 0.61 0.11 0.14 5 0.44 0.33 7 0.11 0.1 0.17 0.23 - 

1IQD:C 1iqd_C_BA 156 16 0.19 0.23 0 0 0 0 0.31 0.14 5 0.94 0.83 0.38 0.32 1 0.38 0.32 5 0.07 0.04 0.56 0.3 * 

1JRH:I 1jrh_I_HL 108 15 0.07 0.1 0.67 0.56 0.67 0.56 0.53 0.31 1 0.53 0.31 0.47 0.78 1 0.47 0.78 1 0.73 0.15 0.6 0.26 - 

1LK3:A 1lk3_A_HL 160 18 0 0 0 0 0 0 0.11 0.1 2 0.67 0.57 0.22 0.27 5 0.56 0.62 5 0.17 0.14 0.61 0.32 * 

1MHP:B 1mhp_B_XY 192 19 0 0 0 0 0.47 0.33 0.74 0.61 1 0.74 0.61 0.68 0.76 1 0.68 0.76 2 0.11 0.13 0.53 0.27 - 

1NL0:G 1nl0_G_HL 51 7 0 0 0 0 0 0 0.29 0.25 1 0.29 0.25 0.2 0.07 2 1 0.5 1 0.71 0.42 0.57 0.33 - 

1NSN:S 1nsn_S_HL 149 18 0 0 0 0 0.39 0.33 0.5 0.45 1 0.5 0.45 0 0 4 0.28 0.28 3 0.06 0.03 0.39 0.14 - 

1OAZ:A 1oaz_A_HL 123 17 0.35 0.5 0.59 0.32 0.59 0.32 0.65 0.46 1 0.65 0.46 0.82 0.82 1 0.82 0.82 5 0.59 0.23 0.29 0.2 * 

1ORQ:C 1orq_C_BA 223 14 0 0 0 0 0.5 0.14 0 0 7 0.5 0.26 0.29 0.33 1 0.29 0.33 6 0.54 0.09 0 0 - 

1ORS:C 1ors_C_BA 132 10 0.6 0.46 0 0 0.7 0.3 0.2 0.08 4 0.6 0.24 0.4 0.24 1 0.4 0.24 4 0.78 0.11 0 0 * 

1PKQ:E 1pkq_E_BA 139 17 0.35 0.5 0.3 0.31 0.3 0.31 0.35 0.21 3 0.65 0.55 0.06 0.06 8 0.29 0.29 8 0.44 0.15 0.47 0.24 - 

1RJL:C 1rjl_C_BA 95 13 0 0 0 0 0 0 0.31 0.19 6 0.69 0.39 0 0 1 0 0 5 0.58 0.14 0.54 0.23 - 

1SY6:A 1sy6_A_HL 204 11 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0.45 0.24 8 0.3 0.1 0.91 0.14 - 
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1TZI:V 1tzi_V_BA 102 4 0 0 0 0 0.75 0.3 0 0 1 0 0 0.5 0.09 6 0.75 0.14 3 1 0.05 0.5 0.05 - 

1WEJ:F 1wej_F_HL 105 11 0 0 0 0 0 0 0.18 0.11 4 0.73 0.44 0.45 0.36 1 0.45 0.36 5 0.1 0.03 0.45 0.09 - 

1YJD:C 1yjd_C_HL 140 14 0.14 0.17 0.5 0.64 0.5 0.64 0.57 0.36 1 0.57 0.36 0 0 4 0.64 0.32 6 0.36 0.11 0.21 0.16 - 

1YNT:F 1ynt_F_BA 254 19 0 0 0 0 0.79 0.58 0 0 1 0 0 0.74 0.88 1 0.74 0.88 16 0.11 0.1 0 0 - 

1YY9:A 1yy9_A_DC 624 20 0 0 0 0 0 0 0 0 1 0 0 NA  NA   22 0 0 0.2 0.07 - 

1ZA3:R 1za3_R_HL 134 15 0.13 0.2 0.47 0.41 0.47 0.41 0.73 0.39 1 0.73 0.39 0 0 2 1 0.88 5 0.57 0.2 0.13 0.25 - 

1ZTX:E 1ztx_E_HL 108 16 0.06 0.09 0 0 0 0 0.38 0.24 3 0.44 0.37 0 0 3 0.56 0.45 1 0.75 0.16 0.19 0.21 - 

2JEL:P 2jel_P_HL 85 15 0 0 0 0 0 0 0 0 3 0.4 0.38 0 0 5 0.47 0.37 5 0.43 0.14 0.07 0.2 - 

1A14:N 1a14_N_HL 388 17 0 0 0 0 0.35 0.18 0.18 0.12 6 0.47 0.33 0 0 1 0 0 11 0 0 0.76 0.2 * 

1A14:N 1nca_N_HL 388 21 0 0 0 0 0.52 0.33 0 0 4 1 0.81 0 0 5 0.86 0.86 11 0 0 0.62 0.2 * 

1RJC:B 1bvk_C_BA 129 17 0 0 0.12 0.09 0.47 0.47 0.06 0.05 1 0.06 0.05 0 0 3 0.76 0.65 3 0.24 0.1 0.29 0.23 * 

1RJC:B 1jhl_A_HL 129 11 0 0 0.27 0.13 0.27 0.13 0 0 2 0.82 0.36 0 0 5 0.45 0.33 3 0.1 0.03 0.27 0.14 * 

1RJC:B 1ndg_C_BA 129 21 0.29 0.46 0.38 0.35 0.38 0.35 0.57 0.55 1 0.57 0.55 0 0 2 0.33 0.33 3 0.43 0.23 0.33 0.32 * 

1RJC:B 1p2c_C_BA 129 18 0.11 0.15 0.17 0.13 0.17 0.13 0.28 0.25 9 0.33 0.33 0.17 0.21 2 0.67 0.6 3 0.56 0.26 0.5 0.41 * 

1JPS:T 1jps_T_HL 219 21 0.05 0.1 0.14 0.09 0.14 0.09 0.05 0.04 2 0.57 0.32 0.86 0.9 1 0.86 0.9 7 0.25 0.13 0.33 0.19 * 

1AR1:B 1ar1_B_CD 298 16 0 0 0.06 0.03 0.06 0.03 0.06 0.04 1 0.06 0.04 0 0 1 0 0 12 0.13 0.05 0 0 * 

1EO8:A 1eo8_A_HL 328 15 0 0 0 0 0.87 0.23 0 0 1 0 0 0 0 1 0 0 14 0.07 0.03 0 0 * 

1EO8:A 1ken_A_HL 328 16 0 0 0.69 0.23 0.69 0.23 0 0 1 0 0 0 0 1 0 0 14 0.13 0.06 0.56 0.13 - 

1EO8:A 1qfu_A_HL 328 19 0 0 0 0 0.84 0.29 0 0 7 0.21 0.17 0 0 3 0.21 0.27 14 0.11 0.05 0.11 0.03 * 

1EO8:A 2vit_C_BA 328 18 0 0 0.33 0.13 0.33 0.13 0.22 0.02 2 1 0.1 0 0 10 0.22 0.33 14 0.18 0.08 0.17 0.04 - 

1EZV:E 1ezv_E_XY 185 17 0 0 0 0 0 0 0.18 0.09 7 0.53 0.53 0 0 1 0 0 7 0.31 0.07 1 0.29 * 

1OSP:O 1osp_O_HL 257 19 0 0 0.05 0.02 0.05 0.02 0 0 4 0.63 0.31 0 0 1 0 0 14 0.17 0.07 0.53 0.17 * 

1OSP:O 1fj1_F_BA 257 17 0 0 0 0 0.71 0.24 0 0 5 0.59 0.3 0.29 0.56 1 0.29 0.56 14 0.25 0.09 0.47 0.14 * 

1FNS:A 1fns_A_HL 196 12 0 0 0 0 0 0 0.17 0.07 6 0.42 0.21 0 0 8 0.33 0.22 7 0 0 0.67 0.3 * 

1G9M:G 1g9m_G_HL 321 12 0 0 0.67 0.12 0.67 0.12 0.08 0.02 2 0.33 0.1 0.5 0.29 1 0.5 0.29 14 0.18 0.05 0.08 0.01 * 

1G9M:G 2b4c_G_HL 321 17 0 0 0.75 0.13 0.75 0.13 0.71 0.21 1 0.71 0.21 0.29 0.21 1 0.29 0.21 14 0.09 0.03 0.08 0.01 - 

1R3J:C 1r3j_C_BA 124 13 0 0 0 0 0 0 0.31 0.15 5 0.85 0.85 0.85 0.92 1 0.85 0.92 4 0.42 0.11 0.08 0.09 * 

1N8Z:C 1n8z_C_BA 607 17 0.24 0.07 0.3 0.38 0.3 0.38 0.24 0.09 1 0.24 0.09 NA  NA   18 0.18 0.1 0.12 0.05 * 

1N8Z:C 1s78_B_FE 607 23 0 0 0 0 0 0 0 0 1 0 0 NA  NA   18 0.05 0.03 0.22 0.12 - 

1NFD:D 1nfd_D_HG 239 13 0 0 0 0 0.92 0.32 0.15 0.06 1 0.15 0.06 0 0 5 0.31 0.18 13 0.25 0.08 0.77 0.16 * 

1TQB:A 1tqb_A_BC 102 18 0 0 0.28 0.29 0.67 0.57 0.56 0.53 1 0.56 0.53 0.17 0.2 3 0.5 0.53 2 0.11 0.08 0.78 0.21 * 
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1TXV:A 1txv_A_HL 452 19 0 0 0 0 0 0 0 0 1 0 0 0 0 7 0.53 0.53 18 0.11 0.06 0.53 0.17 * 

1V7M:V 1v7m_V_HL 163 17 0 0 0 0 0.35 0.32 0.41 0.39 1 0.41 0.39 0.35 0.38 1 0.35 0.38 6 0.31 0.15 0.06 0.11 - 

1XIW:A 1xiw_A_DC 105 18 0 0 0 0 0 0 1 0.86 1 1 0.86 0.83 0.79 1 0.83 0.79 26 0 0 0.88 0.43 - 

1XIW:F 1xiw_F_DC 79 10 0.1 0.14 0 0 0 0 0.1 0.05 8 0.6 0.32 0.1 0.07 1 0.1 0.07 26 0 0 0.4 0.44 - 

1Z3G:A 1z3g_A_HL 186 19 0.12 0.11 0.35 0.17 0.35 0.17 0.53 0.3 1 0.53 0.3 0 0 8 0.26 0.25 10 0.25 0.11 0.35 0.35 - 

2AEP:A 2aep_A_HL 395 21 0 0 0 0 0.48 0.3 0 0 1 0 0 0.05 0.05 1 0.05 0.05 18 0.1 0.07 0.14 0.05 - 

1R0A:B 1r0a_B_HL 429 11   0.73 0.08 0.73 0.08 0.36 0.15 1 0.36 0.15 0 0 1 0 0 10  0 0 1 0.06 * 

‘NA’ means that results for the protein were not obtained.  

Significant predictions (p ≤ 0.05) are shown in bold. 

& - Epitopes used in the DiscoTope training set are indicated by an asterisk; those not used in the training set are indicated by a hyphen. 
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Table 3. AUC values for representative epitopes 
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2ADF:A 2adf_A_HL 0.01 0.62 0.62 0.88 NA 0.88 0.88 0.45 0.66 0.81 0.81 0.57 0.53 0.51 - 

2ADF:A 1fe8_B_IM 0.16 0.67 0.67 0.65 NA 0.62 0.62 0.45 0.67 0.79 0.79 0.60 0.81 0.56 * 

1AFV:A 1afv_A_HL 0.78 0.48 0.41 0.60 0.49 0.62 0.62 0.65 0.65 0.43 0.43 0.63 0.53 0.52 - 

1BGX:T 1bgx_T_HL 0.39 0.48 0.50 0.56 NA 0.42 0.58 0.89 0.89 NA NA 0.52 0.74 0.62 - 

1E6J:P 1e6j_P_HL 0.51 0.43 0.39 0.41 NA 0.46 0.96 0.43 0.67 0.47 0.67 0.55 0.23 0.30 - 

1EGJ:A 1egj_A_HL 0.09 NA NA 0.84 0.59 0.77 0.77 0.50 0.50 0.85 0.85 0.61 0.88 0.67 * 

1FSK:A 1fsk_A_CB 0.85 0.31 0.33 0.54 0.44 0.62 0.62 0.72 0.72 0.44 0.70 0.50 0.82 0.71 * 

1H0D:C 1h0d_C_BA 0.25 0.51 0.51 0.97 0.82 0.43 0.80 0.38 0.73 0.76 0.76 0.55 0.50 0.49 * 

1I9R:A 1i9r_A_HL 0.47 0.72 0.74 0.43 0.45 0.45 0.45 0.51 0.86 0.51 0.66 0.48 0.71 0.55 - 

1IQD:C 1iqd_C_BA 0.10 0.80 0.81 0.74 0.56 0.44 0.44 0.55 0.96 0.64 0.64 0.45 0.78 0.71 * 

1JRH:I 1jrh_I_HL 0.57 0.62 NA 0.49 0.49 0.79 0.79 0.67 0.67 0.72 0.72 0.53 0.62 0.67 - 

1LK3:A 1lk3_A_HL 0.71 0.72 0.76 0.38 0.45 0.40 0.40 0.49 0.81 0.57 0.76 0.52 0.81 0.72 * 

1MHP:B 1mhp_B_XY 0.15 0.44 0.42 0.88 NA 0.42 0.68 0.85 0.85 0.83 0.83 0.52 0.81 0.69 - 

1NL0:G 1nl0_G_HL 0.23 NA NA 0.16 0.45 0.42 0.42 0.58 0.58 0.46 0.95 0.78 0.61 0.69 - 

1NSN:S 1nsn_S_HL 0.76 0.75 0.78 0.26 0.45 0.40 0.64 0.71 0.71 0.44 0.59 0.41 0.58 0.53 - 

1OAZ:A 1oaz_A_HL 0.17 0.33 0.25 0.85 0.65 0.70 0.70 0.77 0.77 0.90 0.90 0.64 0.61 0.55 * 

1ORQ:C 1orq_C_BA 0.65 0.60 0.61 0.55 0.44 0.33 0.64 0.42 0.70 0.63 0.63 0.60 0.48 0.44 - 

1ORS:C 1ors_C_BA 0.59 NA NA 0.96 0.77 0.39 0.78 0.51 0.72 0.65 0.65 0.66 0.50 0.42 * 

1PKQ:E 1pkq_E_BA 0.48 0.69 0.70 0.76 0.65 0.60 0.60 0.59 0.79 0.46 0.60 0.56 0.71 0.63 - 

1RJL:C 1rjl_C_BA 0.64 0.51 0.48 0.33 0.48 0.37 0.37 0.55 0.76 0.39 0.39 0.53 0.73 0.62 - 

1SY6:A 1sy6_A_HL 0.83 0.45 NA 0.54 0.49 0.43 0.43 0.43 0.43 0.45 0.68 0.58 0.82 0.80 - 

1TZI:V 1tzi_V_BA 0.20 0.49 0.55 0.56 0.45 0.37 0.84 0.36 0.36 0.64 0.78 0.60 0.52 0.54 - 

1WEJ:F 1wej_F_HL 0.67 0.82 0.83 0.33 0.44 0.45 0.45 0.50 0.81 0.68 0.68 0.39 0.47 0.45 - 

1YJD:C 1yjd_C_HL 0.44 0.53 0.54 0.80 0.53 0.73 0.73 0.73 0.73 0.44 0.74 0.52 0.58 0.54 - 
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1YNT:F 1ynt_F_BA 0.31 NA NA 0.69 NA 0.44 0.87 0.44 0.44 0.87 0.87 0.51 0.49 0.46 - 

1YY9:A 1yy9_A_DC 0.46 0.74 0.75 0.20 0.45 0.46 0.46 0.47 0.47 NA NA 0.48 0.68 0.55 - 

1ZA3:R 1za3_R_HL 0.29 0.72 0.77 0.61 0.53 0.69 0.69 0.80 0.80 0.45 0.99 0.65 0.69 0.54 - 

1ZTX:E 1ztx_E_HL 0.73 0.63 0.63 0.37 0.48 0.43 0.43 0.59 0.66 0.39 0.72 0.54 0.47 0.54 - 

2JEL:P 2jel_P_HL 0.58 0.70 0.70 0.59 NA 0.41 0.41 0.36 0.63 0.40 0.65 0.44 0.66 0.51 - 

1A14:N 1a14_N_HL 0.69 0.75 0.76 0.38 0.45 0.46 0.64 0.56 0.72 0.47 0.47 0.47 0.87 0.81 * 

1A14:N 1nca_N_HL 0.56 0.67 0.69 0.30 0.45 0.46 0.73 0.46 1.00 0.47 0.93 0.47 0.84 0.74 * 

1RJC:B 1bvk_C_BA 0.61 0.62 0.61 0.66 0.44 0.47 0.69 0.44 0.44 0.44 0.85 0.46 0.66 0.57 * 

1RJC:B 1jhl_A_HL 0.45 0.73 0.73 0.51 0.44 0.55 0.55 0.42 0.84 0.44 0.68 0.39 0.79 0.55 * 

1RJC:B 1ndg_C_BA 0.46 0.66 0.65 0.66 0.61 0.62 0.62 0.74 0.74 0.40 0.60 0.57 0.74 0.60 * 

1RJC:B 1p2c_C_BA 0.70 0.55 0.57 0.48 0.51 0.49 0.49 0.57 0.61 0.54 0.80 0.65 0.74 0.69 * 

1JPS:T 1jps_T_HL 0.49 0.63 0.72 0.77 0.50 0.49 0.49 0.46 0.72 0.92 0.92 0.54 0.62 0.59 * 

1AR1:B 1ar1_B_CD 0.87 0.62 0.64 0.15 0.46 0.48 0.48 0.49 0.49 0.47 0.47 0.49 0.57 0.45 * 

1EO8:A 1eo8_A_HL 0.43 0.64 0.65 0.67 0.49 0.42 0.87 0.45 0.45 0.48 0.48 0.48 0.27 0.39 * 

1EO8:A 1ken_A_HL 0.32 0.61 0.62 0.59 0.49 0.79 0.79 0.44 0.44 0.49 0.49 0.51 0.76 0.68 - 

1EO8:A 1qfu_A_HL 0.54 0.64 0.64 0.60 0.49 0.42 0.86 0.45 0.58 0.48 0.59 0.50 0.38 0.44 * 

1EO8:A 2vit_C_BA 0.51 0.56 0.63 0.48 0.49 0.60 0.60 0.29 0.68 0.48 0.59 0.54 0.58 0.48 - 

1EZV:E 1ezv_E_XY 0.84 0.62 0.64 0.23 0.44 0.42 0.42 0.50 0.74 0.48 0.48 0.47 0.85 0.88 * 

1OSP:O 1osp_O_HL 0.90 0.41 0.38 0.82 NA 0.40 0.40 0.46 0.76 0.48 0.48 0.49 0.76 0.66 * 

1OSP:O 1fj1_F_BA 0.17 0.50 0.50 0.62 NA 0.37 0.77 0.45 0.75 0.64 0.64 0.54 0.68 0.63 * 

1FNS:A 1fns_A_HL 0.50 0.57 0.57 0.40 NA 0.45 0.45 0.52 0.66 0.45 0.63 0.44 0.92 0.78 * 

1G9M:G 1g9m_G_HL 0.17 0.49 0.48 0.68 0.45 0.74 0.74 0.47 0.61 0.73 0.73 0.53 0.44 0.43 * 

1G9M:G 2b4c_G_HL 0.13 0.46 0.44 0.68 0.45 0.78 0.78 0.79 0.79 0.62 0.62 0.48 0.43 0.43 - 

1R3J:C 1r3j_C_BA 0.84 0.81 0.81 0.53 0.45 0.42 0.42 0.56 0.92 0.92 0.92 0.52 0.72 0.49 * 

1N8Z:C 1n8z_C_BA 0.30 0.46 0.46 0.82 0.57 0.64 0.64 0.59 0.59 NA NA 0.57 0.59 0.53 * 

1N8Z:C 1s78_B_FE 0.16 0.56 0.57 0.60 0.45 0.49 0.49 0.47 0.47 NA NA 0.50 0.55 0.58 - 

1NFD:D 1nfd_D_HG 0.90 0.73 0.71 0.34 0.46 0.43 0.90 0.51 0.51 0.46 0.62 0.55 0.88 0.77 * 

1TQB:A 1tqb_A_BC 0.44 0.42 0.44 0.33 0.43 0.57 0.78 0.73 0.73 0.51 0.70 0.41 0.59 0.57 * 

1TXV:A 1txv_A_HL 0.64 0.88 0.89 0.59 0.45 0.43 0.43 0.47 0.47 0.47 0.75 0.52 0.87 0.71 * 

1V7M:V 1v7m_V_HL 0.67 0.59 NA 0.37 0.48 0.45 0.63 0.67 0.67 0.64 0.64 0.56 0.47 0.50 - 

1XIW:A 1xiw_A_DC 0.85 0.76 0.90 0.31 0.44 0.41 0.41 0.99 0.99 0.89 0.89 0.45 0.87 0.83 - 
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1XIW:F 1xiw_F_DC 0.69 0.65 0.74 0.60 0.51 0.41 0.41 0.42 0.71 0.45 0.45 0.48 0.59 0.66 - 

1Z3G:A 1z3g_A_HL 0.48 0.65 0.59 0.34 0.51 0.59 0.59 0.70 0.70 0.43 0.59 0.53 0.66 0.64 - 

2AEP:A 2aep_A_HL 0.68 0.50 0.51 0.43 0.45 0.46 0.71 0.46 0.46 0.50 0.50 0.52 0.70 0.49 - 

1R0A:B 1r0a_B_HL 0.12 0.51 0.54 0.02 NA 0.76 0.76 0.65 0.65 0.47 0.47 0.45 0.94 0.79 * 

‘NA’ means that results for the epitope/protein were not obtained.  

& - Epitopes used in the DiscoTope training set are indicated by an asterisk; those not used in the training set are indicated by a hyphen. 
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Table 4. Overall performance of patch prediction and protein-protein docking methods 

statistics ProMate  

PPI-

PRED  

1
st
 patch 

PPI-

PRED 

best patch 

PatchDock 

1
st
 model 

PatchDock 

best model 

of 10 

ClusPro 

(DOT)  

1
st
 model 

ClusPro 

(DOT) best 

model of 10 

CEP 
DiscoTope 

(-7.7) 

sensitivity 0.091 0.153 0.331 0.300 0.425 0.258 0.453 0.310 0.416 

1-specificity 0.083 0.161 0.135 0.135 0.114 0.079 0.067 0.223 0.214 

PPV 0.101 0.083 0.188 0.175 0.262 0.235 0.390 0.110 0.155 

accuracy 0.841 0.780 0.819 0.816 0.846 0.863 0.892 0.739 0.754 

AUC 0.504 0.496 0.598 0.583 0.656 0.589 0.693 0.544 0.601 

P-value 0.27 1.0 7.8E-30 9.0E-23 <1.0E-50 7.9E-34 <1.0E-50 4.3E-06 4.1E-25 

Statistics averaged over epitopes 

sensitivity 0.09±0.17 0.15±0.24 0.34±0.32 0.27±0.24 0.42±0.29 0.25±0.31 0.46±0.28 0.34±0.28 0.43±0.31 

1-specificity 0.08±0.03 0.16±0.07 0.14±0.07 0.15±0.06 0.13±0.07 0.10±0.07 0.08±0.05 0.28±0.20 0.22±0.15 

PPV 0.11±0.20 0.10±0.17 0.21±0.24 0.18±0.19 0.30±0.25 0.25±0.33 0.41±0.29 0.11±0.08 0.18±0.12 

accuracy 0.83±0.05 0.77±0.07 0.81±0.08 0.80±0.08 0.83±0.09 0.84±0.09 0.88±0.07 0.69±0.17 0.74±0.12 

AUC 0.51±0.09 0.50±0.13 0.60±0.17 0.56±0.11 0.64±0.17 0.58±0.17 0.69±0.15 0.53±0.08 0.60±0.13 
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Additional files 

Additional file 1 

File format: DOC 

Title: The representative structures of protein antigens (numbered) and antibody-protein 

complexes represented different epitopes for each antigen (epitopes inferred from one-

chain antibody fragments are in italic) 

Description: The data provides curated information on 82 3D structures of antibody-protein 

complexes (dataset #1) represented 169 structures of antibody-protein complexes 

available in the PDB of January, 2006 and used in this work. 

 

Additional file 2 

File format: XLS 

Title: The detailed statistics on the prediction results for 59 representative epitope.  

Description: This table provides additional information that complements the Tables 2 and 3.The 

analysis was performed using 59 representative epitopes from dataset #2 that were 

inferred from structures of one-chain (monomer) antigens in complexes with two-chain 

antibody fragments.  























Additional files provided with this submission:

Additional file 1: supplementary table 1.doc, 302K
http://www.biomedcentral.com/imedia/5026546621615840/supp1.doc
Additional file 2: supplementary table 2.xls, 139K
http://www.biomedcentral.com/imedia/1181852290161584/supp2.xls

http://www.biomedcentral.com/imedia/5026546621615840/supp1.doc
http://www.biomedcentral.com/imedia/1181852290161584/supp2.xls
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