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Helper T-cell activation is essential for the initiation of a protective
immune response to pathogens and tumors1,2. Human leukocyte
antigen–group DR (HLA-DR), the predominant isotype of the
human class II major histocompatibility complex (MHC), plays a
central role in helper T-cell selection and activation. Proteins of
HLA-DR bind peptide fragments derived from protein antigens and
display them on the surface of antigen-presenting cells for interac-
tion with antigen-specific receptors of T lymphocytes1.

X-ray crystallographic studies demonstrated that the HLA-DR
ligand binding groove consists of pockets, resulting in strong prefer-
ences for interaction with particular amino acid side chains of the
ligands3–6. Molecules of HLA-DR are extremely polymorphic.
Polymorphic residues are often involved in forming HLA-DR pock-
ets; consequently, pockets of different HLA-DR alleles can be of dis-
tinct chemical and size characteristics. Some of the ligand side chains
interact with the pockets and increase the overall binding affinity
and specificity of ligands, whereas others interfere with pocket
residues and reduce binding7. Therefore, the pocket specificity can
be characterized either topographically (i.e., by differences in the
amino acid residues forming the pockets) or functionally (i.e., by
substituting the corresponding peptide ligand position with all nat-
ural amino acid residues and by quantifying their effects on binding
[“pocket profiles”]). The sum of all pocket profiles of a given HLA-
DR allele is defined as a “quantitative matrix”8.

We and others have demonstrated that matrices are powerful
tools to predict HLA class II ligands8,9. In contrast to previous all-or-
nothing rules and approaches that are based on artificial neural net-
works10,11, matrix-based predictions rely on mathematical processing
of individual peptide side chain effects (see ref. 12 for a detailed
comparison of bioinformatic tools used for HLA class II ligand pre-
diction). A typical matrix-based algorithm first extracts all possible
peptide frames from a given protein sequence. Subsequently, the
corresponding position- and amino acid–specific matrix values are
assigned to each residue of these peptide frames. Finally, the sum of
these matrix values is determined for each frame. It has been shown
that the resulting numerical values (“peptide scores”) correlate with
the binding affinity of HLA-DR ligands, thus making matrices
important tools for the prediction of candidate T-cell epitopes13,14.

HLA-DR molecules account for more than 90% of the HLA class
II isotypes expressed on antigen-presenting cells. Although the
HLA-DRA locus is monomorphic, more than 100 alleles have been
described for the HLA-DRB1 locus15. Matrices have so far been
determined by measuring all possible pocket profiles on a given
HLA-DR allele. Hence, the determination of a single HLA-DR
matrix required hundreds of individual peptides and thousands of
peptide binding assays13; a global coverage of HLA class II binding
specificity seemed, therefore, unlikely in the near future. In this
report, we demonstrate that pocket profiles are nearly independent
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of the remaining HLA-DR groove. Thus, once a pocket profile has
been determined in vitro, it can be shared among other HLA-DR
alleles as long as their amino acid residues contributing to the pock-
et are identical. Consequently, a relatively small number of pocket
profiles can be assigned to a large number of HLA-DR alleles via
sequence comparison. The resulting virtual matrices cover the
majority of human HLA-DR specificity.

A comprehensive database of candidate promiscuous T-cell epi-
topes in tumors or pathogens would be of great value for vaccine
strategies. Major bottlenecks so far have included not only the need
to determine quantitative matrices for each polymorphic HLA-DR
allele, but also the lack of gene expression data enabling, for exam-
ple, a comprehensive selection of genes expressed in disease but not
in normal tissue. The latter has become feasible by the recent devel-
opment of DNA microarray technology16,17: DNA microarrays are
used to monitor and compare the expression of thousands of genes
simultaneously and are thus capable of identifying large pools of dif-
ferentially expressed candidate antigens. The former is resolved in
this study by applying the above concept of virtual HLA matrices.

Results and discussion
Allele independence of pocket profiles. The value of matrix-based
computational algorithms for the prediction of helper T-cell epi-
topes has been demonstrated beyond doubt, as exemplified by the
recent discovery of a human leukocyte function-associated antigen-
1 (LFA-1) peptide as the candidate autoantigen in Lyme arthritis18 or
by a recent x-ray crystal structure of a DRB1*0401–collagen II pep-
tide complex6,19. Both the LFA-1 and the collagen peptides were iden-
tified using our previously described DRB1*0401 matrix8. In this
report we propose a new strategy (Fig. 1A) that leads to both a broad
coverage of human HLA-DR binding specificity and the possibility
of creating genomic databases of candidate T-cell epitopes.

We have previously demonstrated that pocket specificity profiles
are mostly independent of neighboring ligand side chains8.
Moreover, initial analyses on DRB1*04 subtypes have also suggested
that pocket profiles might be independent of the remaining HLA-DR
groove19. Obviously, the latter would have important implications in
that pocket profiles are only determined once and can subsequently
be shared among alleles as long as they are predicted to have similar
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Figure 1. Allele independence of pocket profiles leads to wide coverage
of HLA-DR binding specificity. (A) Overview of the strategy for the
computational generation of HLA-DR ligand databases: (1) Use of
multiple alignment of HLA-DR sequences to DR sequences of known
three-dimensional structure to assign polymorphic residues to HLA-DR
pockets; classification of pockets according to their composition of
polymorphic residues. (2) Determination of a database of pocket
specificity profiles, as described in the Experimental protocol. (3)
Combination of the data coming from (1) and (2) for the assignment of
profiles to corresponding pockets, based on the demonstration that
pockets sharing the same polymorphic residues exhibit a similar pocket
specificity profile; assembly of virtual HLA-DR matrices using the
assigned pocket profiles. (4) Incorporation of the obtained HLA-DR
virtual matrix database into an epitope prediction software. (5) Presentation of protein/gene/EST sequence databases on DNA microarrays. (6)
Identification of specifically expressed or upregulated genes in disease tissues by DNA microarray expression mapping. (7) Scanning of the
identified sequences using the prediction software, allowing the identification of candidate promiscuous HLA-DR ligands. (8) Use of the generated
HLA class II ligand database for the identification of candidate promiscuous helper T-cell epitopes. (B) Schematic representation of the modular
structure of the HLA-DR binding groove. The binding clefts of four HLA-DR allotypes are compared. The cleft regions 1–3 are constituted by
monomorphic residues mostly coming from the DR a chain (except for one dimorphic residue from the DR b chain (Gly/Val86), composing pocket
1); positions 5 and 8 were excluded because peptide side chains at these positions are oriented away from the DR binding cleft, as shown in
crystal structure analyses3,5,6; pockets 4, 6, 7, and 9 are mainly formed by DR b chain polymorphic residues and are responsible for the allele
specificity of HLA-DR–ligand interaction. The modular structure of the HLA-DR binding groove enables the free exchange of functional pocket
profiles, as long as the polymorphic residues forming the pockets are the same. (C) Pockets on different alleles sharing the same polymorphic
residues exhibit similar pocket specificity profiles. Comparison of pocket specificity profiles obtained for pocket 9 from HLA-DR alleles, which are
formed either by identical polymorphic residues (top left and bottom right panels) or by different ones (top right and bottom left panels),
demonstrating that HLA-DR primary structure homology can be sufficient to assign defined binding specificity profiles to given pockets. Pocket
specificity profiles were determined in HLA-DR competitive binding assays by quantifying the effects of all amino acid substitutions at a given
position of affinity optimized, alanine-based designer peptides, as described in the Experimental Protocol. Relative binding values were calculated
by normalizing experimental IC50 data with the IC50 value obtained for alanine at the same peptide position (IC50 Ala/IC50 substitution).
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pocket topographies (Fig. 1B). To test this hypothesis, we
determined pocket specificity profiles for several HLA pock-
ets and compared them with each other (Fig. 1C). The align-
ment of HLA-DR sequences with DR sequences of known
three-dimensional structures3–6 indicated that the polymor-
phic residues constituting pocket 9 in DRB1*0401 and
DRB1*1101 allotypes are identical. This finding is consistent
with the observation that the pocket profiles for both alleles
are similar (Fig. 1C). In contrast, the alignment to HLA-DR
sequences with known three-dimensional structure revealed
differences in the amino acid composition of pocket 9
between DRB1*0401 and DRB1*0405 subtypes, and between
DRB1*0401 and DRB1*0801 allotypes. Once again, this is
consistent with the resulting pocket profiles (Fig. 1C).
Furthermore, a comparison of DRB1*0405 and DRB1*0801
sequences via alignment to three-dimensional structures
indicated identical pocket 9 topographies and, consequently,
predicted similar pocket profiles. The profiles shown in
Figure 1C demonstrate that this was indeed the case. We per-
formed a similar set of experiments for the polymorphic
pocket 6 (data not shown) and were able to further confirm
the approximation that profiles are mainly independent of
the remaining HLA-DR groove and that primary HLA-DRB
structures are sufficient to assign profiles to given HLA-DR
pockets.

The approximation that pocket profiles show allele inde-
pendence enables the generation of virtual matrices; that is,
profiles for identical pockets are recycled from a pool rather
than determined repeatedly for each allele. The important conse-
quence is that a relatively small number of profiles can be used to
build a large number of HLA-DR matrices. The synthesis of approxi-
mately 1,000 synthetic designer peptides and the accomplishment of
10,000 HLA-ligand binding assays allowed us to create a database of
35 independent pocket profiles (Table 1). These 35 profiles were used
to build 51 virtual HLA-DR matrices (Table 2), which represent the
majority of the human HLA-DR peptide binding specificity20.

HLA-DR ligand prediction with virtual matrices. Are virtual
matrices suitable for the prediction of HLA class II ligands and candi-
date T-cell epitopes? To answer this question, we created a new soft-
ware package named TEPITOPE, in which the pocket profiles and the
resulting virtual matrix data were incorporated (Fig. 2A). The basic
ligand prediction algorithm works, in principle, like earlier quantita-
tive matrix-based algorithms (see above). However, instead of calcu-
lating only peptide scores for every peptide frame in a given protein
sequence, it enables the calculation of score distribution curves for
each HLA-DR allotype using natural protein sequence databases as a
source (Fig. 2B). Thus, peptides are predicted based on a user-select-
ed threshold defined as the percentage of best scoring natural pep-
tides (Fig. 2B). This compensates in part for the allelic differences of
absolute peptide scores caused by variations in the sensitivity of HLA-
DR peptide binding assays (data not shown).

The predictive power of virtual matrices was tested on both indi-
vidual T-cell epitopes and large peptide repertoires. Gross et al.18

have recently used our previously described quantitative DRB1*0401
matrix to identify a candidate autoantigenic peptide for Lyme arthri-
tis. Figure 2A shows that the virtual matrices incorporated into our
software would have predicted this peptide too, using a stringent
threshold setting of “1% best scoring natural peptides.” Figure 2C
shows that our softward can also be used to determine ‘threshold
profiles’ for peptides. For example, the threshold profile of MAGE-3
281–295, a peptide originally identified with TEPITOPE21, revealed
that it is predicted to bind to many HLA-DR allotypes, even when
stringent threshold settings are used (Fig. 2C). Notably, we con-
firmed the promiscuity of MAGE-3 281–295 by in vitro binding
studies, and we also demonstrated that MAGE-3 281–295 was

indeed presented by melanoma cells21. In contrast to MAGE-3
281–295, the melanoma-specific helper T-cell epitope tyrosinase
448–462 (ref. 22) was described as being a DRB1*0401-restricted
low-affinity ligand. This again is consistent with the threshold pro-
file for this peptide (Fig. 2C).

Obviously, larger ligand repertoires are required for a better esti-
mation of the predictive power of virtual matrices. Therefore, we
tested several molecular repertoires. The first repertoire consisted of
both HLA-DR–selected and nonselected peptides originally generat-
ed by the bacteriophage M13 display technology23,24. We then tested
whether we could computer-simulate the screening of M13 display
libraries. We combined both the selected and nonselected peptide
repertoires and examined whether the virtual matrices could “sepa-
rate” them again computationally (Fig. 3A). Up to 80% of the HLA-
DR selected peptides could be predicted using a stringent threshold
setting of 1–3%, whereas <5% of the nonselected peptides were pre-
dicted under the same conditions (Fig. 3B). These results clearly
demonstrated the ability of TEPITOPE to computationally separate
HLA selected and nonselected peptide repertoires. To further assess
the predictive power of virtual matrices, we performed peptide bind-
ing assays with hundreds of randomly selected natural peptide
sequences, generating yet another repertoire of HLA-DR binding
and nonbinding peptides. We demonstrated that stringent threshold
settings were sufficient for the preferential prediction of HLA-DR
ligands (data not shown). Finally, we tested natural ligands and T-
cell epitopes using the natural ligand database generated by
Rammensee’s group25. More than half of all natural ligands could be
predicted using a 1–3% threshold setting and more than 75% with a
1–6% threshold setting (Fig. 3C). In conclusion, the use of large data
sets that were either derived experimentally in our laboratory (Fig.
3B and data not shown) or from the literature (Fig. 3C) demonstrat-
ed the utility of the threshold setting for the prediction of HLA-DR
ligands. In addition, it allowed us to estimate the potential false-pos-
itive and false-negative rate at different threshold stringencies (Fig.
3B and data not shown).

Generation of promiscuous HLA-DR ligand databases. The
computational prediction of candidate T-cell epitopes by virtual
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Table 2. Assembled DR virtual matrices.

DRB1*0101 [1;1;1;1;1] DRB1*0102 [2;1;1;1;1] DRB1*1501 [2;2;2;2;1]
DRB1*1502 [1;2;2;2;1] DRB1*1506 [2;2;2;2;1] DRB1*0301 [2;3;3;3;2]
DRB1*0305 [1;3;3;3;3] DRB1*0306 [2;3;3;4;3] DRB1*0307 [2;3;3;4;3]
DRB1*0308 [2;3;3;4;3] DRB1*0309 [1;3;3;3;2] DRB1*0311 [2;3;3;4;3]
DRB1*0401 [1;4;4;4;3] DRB1*0402 [2;5;4;5;3] DRB1*0404 [2;6;4;6;3]
DRB1*0405 [1;6;4;6;5] DRB1*0408 [1;6;4;6;3] DRB1*0410 [2;6;4;6;5]
DRB1*0421 [1;4;4;4;2] DRB1*0423 [2;6;4;6;3] DRB1*0426 [1;4;4;4;3]
DRB1*1101 [1;7;3;7;3] DRB1*1102 [2;11;3;11;3] DRB1*1104 [2;7;3;7;3]
DRB1*1106 [2;7;3;7;3] DRB1*1107 [2;3;3;3;3] DRB1*1114 [1;11;3;11;3]
DRB1*1120 [1;11;3;11;2] DRB1*1121 [2;11;3;11;3] DRB1*1128 [1;7;3;7;2]
DRB1*1301 [2;11;3;11;2] DRB1*1302 [1;11;3;11;2] DRB1*1304  [2;11;3;11;5]
DRB1*1305 [1;7;3;7;2] DRB1*1307 [1;7;3;9;3] DRB1*1311 [2;7;3;7;3]
DRB1*1321 [1;7;3;7;5] DRB1*1322 [2;11;3;11;3] DRB1*1323 [1;11;3;11;3]
DRB1*1327 [2;11;3;11;2] DRB1*1328 [2;11;3;11;2] DRB1*0701 [1;8;5;8;4]
DRB1*0703 [1;8;5;8;4] DRB1*0801 [1;9;3;9;5] DRB1*0802 [1;9;3;9;3]
DRB1*0804 [2;9;3;9;3] DRB1*0806 [2;9;3;9;5] DRB1*0813 [1;9;3;6;3]
DRB1*0817 [1;9;3;7;5] DRB5*0101 [1;10;6;10;6] DRB5*0105 [1;10;6;10;6]

Virtual DR matrices were assembled according to the modular structure of the HLA-DR
groove as indicated in Figure 1B. Profiles for pockets 4, 6, 7, and 9 were derived from the
database shown in Table 1. Profiles for the relative peptide positions 2 and 3 were derived
from the DRB1*0401 matrix8 (not shown). For relative peptide position 1, only aliphatic (Ile,
Leu, Met, Val) and aromatic (Phe, Trp, Tyr) amino acid residues were considered; more specif-
ically, for HLA-DR alleles with a b86 Gly composing pocket 1, values of 0 were assigned to
aromatic and -1 to aliphatic residues at relative P1, while the reverse was done for DR alleles
with a b86 Val composing pocket 1 (ref. 8). The virtual matrix values for each allele are encod-
ed by a set of five numbers listed after each allele: The first number indicates whether the
allele has a Gly (= 1) or a Val (= 2) at b86 (see above). The second number represents the iden-
tification number of the pocket 4 profile (see Table 1). The third, fourth, and fifth number indi-
cates the identification number of the pocket 6, 7, and 9 profiles, respectively.
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matrices is not limited to well-defined protein sequences. Various
genome projects are generating huge amounts of new sequence
information26–29, and high-throughput sequencing of cDNA
libraries has led to the discovery of several millions of expressed
sequence tags (ESTs)30,31. The availability of these sequences makes
it possible to quantify mRNA levels for tens of thousands of genes
simultaneously by using high-density oligonucleotide arrays16,17.
Moreover, comparative transcript profiling studies with DNA
microarrays enable the discovery of large repertoires of genes that

are either specifically expressed or upregulated in disease tissues
(data not shown).

We propose to employ TEPITOPE on a genome-wide level for the
generation of comprehensive HLA-DR ligand databases. For exam-
ple, helper T cells have been shown to play a crucial role for the opti-
mal induction of protective immunity against certain types of
tumors32. A database of promiscuous candidate T-cell epitopes of
genes upregulated or specifically expressed in tumor tissues could be
a valuable tool for the design of epitope-based vaccines. To demon-

RESEARCH

Figure 2. Function of the TEPITOPE software. (A) User interface and prediction of a selective peptide in human leukocyte function–associated
antigen-1. The predicted region (bold) corresponds to a recently described candidate autoantigenic peptide (underlined) for Lyme arthritis
(human leukocyte function–associated antigen-1, hLFA-1aL 332–340, [ref. 18]). The prediction threshold was set to 1% (Fig. 2B). (B) Calculation
and display of score distribution curves. TEPITOPE allows the calculation of score distribution curves for each HLA-DR allele b ased on any
natural protein database. The Figure shows the DRB1*0401 score distribution of all possible peptide frames in a database of nat ural protein
sequences (8,000 peptide frames). This database is used to normalize the prediction for each HLA-DR allele. Prediction thresholds (chosen by
the operator) are expressed as percentage of the best scoring peptides in natural peptide frames. (C) Quantitative evaluation o f threshold
profiles for given peptides. For any submitted peptide sequence, a histogram displays the predictability for each DR allele acc ording to the
threshold stringency: bars indicate the threshold setting at which the peptide is predicted as a ligand for each listed DR alle le. Examples of
quantitative evaluations are shown for DR promiscuous MAGE-3 281–29521 (left) and allele-specific DRB1*0401 restricted (tyrosinase 448–462
[ref. 22]) (right) peptides derived from tumor-associated antigens.
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strate that such a comprehensive database can easily be generated by
combining DNA microarray technology with epitope prediction
software, we performed a simple pilot study: Using both a commer-
cially available Affymetrix (Santa Clara, CA) DNA microarray set
(~7,000 genes) and two of our own microarray designs (~12,000
genes; Fig. 4A and B), we have recently profiled 20 primary colon
cancer tissues together with the corresponding adjacent normal tis-
sues (data not shown). Although more than 1,000 independent
genes were found to be differentially expressed in a population of 20
patients, only 34 genes were upregulated or specifically expressed in
³50% of all patients (data not shown). These 34 genes gave rise to
approximately 19,000 peptide frames. Of these 19,000 peptide
frames, 130 candidate promiscuous T-cell epitopes were predicted
by TEPITOPE using the following criteria: First, threshold (1–3%
best scoring natural peptides); second, promiscuity (predicted to
bind to 5/7 HLA-DR allotypes); and third, peptide length (15 amino
acid residues). This example demonstrates both the relative ease of
generating such a database and the manageable data output.

Moreover, the fact that antibodies have been described in serum of
cancer patients for some of the microarray-selected candidate anti-
gens (Fig. 4) further supports the feasibility of such an approach.

Databases of candidate HLA-DR ligands and helper T-cell epitopes
could ultimately be determined for every gene in a genome. However,
the combination of epitope prediction software with other “filters,” as
demonstrated in this report, will obviously be more practical. DNA
microarray/prediction software–based approaches to generate data-
bases of promiscuous candidate T-cell epitopes could be widely
applicable in other areas. For example, the current genome project for
the malaria-causing pathogen Plasmodium falciparum should soon
make it possible to generate similar databases (e.g., for life cycle–spe-
cific candidate antigens). Similarly, approaches that use epitope pre-
diction software in combination with serological identification of
antigens by recombinant expression cloning (SEREX) technology33

might also prove very useful. SEREX allows the systematic identifica-
tion of antigens in human cancers and has led to the definition of a
wealth of new tumor antigens in many different tumor entities.
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Figure 3. Validation of TEPITOPE using large peptide
repertoires. (A and B) Simulation of a bacteriophage
peptide display library screening with HLA-DR
molecules. (A) Schematic representation of the
validation experiment: (left) bacteriophage-displayed
peptides binding to biotinylated DR molecules are
separated by solid phase-bound streptavidin capture,
and isolated by low pH elution; (right) the peptide
pools generated with the M13 bacteriophage display
technology are submitted to analysis for the
computational “isolation” of DR-selected peptides.
(B) Prediction of in vitro generated DR repertoires
consisting of 60 DRB*0101-selected, 52 DRB*0401-
selected, 52 DRB*1101-selected, and 60 nonselected
bacteriophage displayed peptide sequences. Results
for each HLA-DR allele are expressed as the
percentage of predicted peptides out of the total of
the respective HLA-DR-selected (black bars) and
nonselected (gray bars) peptide repertoires at the
indicated threshold settings. (C) Prediction of HLA-
DR binders from the natural HLA-DR peptide ligands
and T-cell epitopes database25. Natural HLA-DR
peptide ligands and T-cell epitopes (n = 223) were
selected for prediction based on the following two
criteria: (1) as many peptides are represented as sets
of truncated peptides, only one sequence per set was
selected, and (2) as the current alpha version of
TEPITOPE represents only 25 alleles, only available
ligands for these alleles were selected (Fig. 2A). The
peptides were analyzed at the indicated different
threshold settings. Results are expressed for all HLA-
DR alleles as the percentage of predicted peptides
out of the total of the peptide repertoire. Predicted
peptides are only counted once for a given HLA-DR
allele; that is, a peptide predicted at a stringent
threshold (e.g., 1–3%) would not be counted again at a
less stringent threshold setting (e.g., 4–6%).

A

B

C

Figure 4. Examples for tumor antigen
identification by DNA microarray
technology. C-myc and an endogenous
retroviral protease were upregulated in
7/20 and 9/20 colon cancer patients,
respectively. Antibodies have been
described in the serum of cancer patients
for both antigens36 (data not shown).
Quantification for any mRNA is given by
the sum of all perfect match intensities
subtracted from mismatch intensities
divided by the total number of probe pairs
(= ‘intensity’)16.
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Experimental protocol
Determination of a pocket profile database. Pocket profiles were derived
from side-chain scanning data obtained by substituting allele-specific pep-
tide ligands (basis peptides) in position 4, 6, 7, and 9, with all natural amino
acid residues. Peptide interactions with detergent-solubilized HLA-DR mol-
ecules were measured using an ELISA-based high-throughput competitive
binding assay as described13,34. For each HLA-DR molecule analyzed a spe-
cific basis peptide was selected after several optimization experiments to
guarantee a highly sensitive analysis of the effects of each peptide side chain
on HLA-DR binding13. The following basis peptides were used in this study:
Gly-Phe-Lys-Ala-Ala-Ala-Ala-Ala-Ala-Ala for DRB1*0101, DRB5*0101,
and DRB1*0701; Ile-Ala-Tyr-Asp-Ala-Ala-Ala-Ala-Ala for DRB1*0301; Tyr-
Arg-Ser-Met-Ala-Ala-Ala-Ala-Ala for DR1*0401, DRB1*0801, and
DRB1*1101; Gly-Ile-Arg-Ala-Ala-Tyr-Ala-Ala-Ala-Ala for DRB1*1501.
Competition assays were conducted to measure the ability of substituted
basis peptides to compete with a biotinylated indicator peptides for binding
to purified DR molecules. At least five dilutions were determined for each
competitor peptide. The resulting data points were plotted34 and the shape
of the curves were used for quality control; that is, data sets that did not dis-
play a sigmoid shape were repeated. The following biotinylated indicator
peptides were used: Gly-Phe-Lys-Ala-Ala-Ala-Ala-Ala-Ala-Ala for
DRB1*0101 and DRB1*0701, Gly-Ile-Arg-Ala-Ala-Tyr-Ala-Ala-Ala-Ala for
DRB1*1501, myelin-based protein 85–99 for DRB5*0101, Ile-Ala-Tyr-Asp-
Ala-Ala-Ala-Ala-Ala for DRB1*0301, Tyr-Pro-Lys-Phe-Val-Lys-Gln-Asn-
Thr-Leu-Lys-Ala-Ala for DRB1*0401 (ref. 19), tetanus toxoid830–843 for
DRB1*1101 (ref. 35), and Gly-Tyr-Arg-Ala-Ala-Ala-Ala-Ala-Ala-Leu for
DRB1*0801. The relative binding data of the competitor peptides were
expressed as the concentration of competitor peptide required to inhibit
50% of binding of the biotinylated indicator peptide (IC50).

Assembly of virtual matrices and software. Virtual matrices were assem-
bled as follows. First, multiple alignments of HLA-DR sequences to DR
sequences of known three-dimensional structures were performed to link
polymorphic DR residues to given DR pockets. Second, pockets were classi-
fied according to their composition of polymorphic residues; that is, pockets
from different alleles constituted by identical residues were considered iden-
tical. Third, a pocket profiles database was determined in vitro on 11 HLA-
DR alleles (Table 1). Fourth, pocket profiles were assigned to pockets of all
HLA-DR alleles according to their classification. And fifth, 51 fully assembled
virtual DR matrices were generated by combining the assigned profiles of
pockets 4, 6, 7, and 9, and cleft region 2 and 3. Expert rules were used for
pocket 1, as previously described19 (Table 2, legend). Profiles for peptide posi-
tions 5 and 8 were not considered due to their minimal effect on binding3

(data not shown). TEPITOPE is a Windows 98/NT application. The visual
user interface allows the identification of promiscuous HLA-DR ligands
independent of whether identical and/or shifted HLA-DR binding frames
constitute promiscuity. Twenty-five virtual HLA-DR matrices were incorpo-
rated into the current alpha version of the application. Requests to use the
alpha version of TEPITOPE should be addressed via e-mail to juergen.ham-
mer@roche.com.

Microarray design, RNA sample preparation, hybridization, and analysis.
Three microarray designs were used for transcript mapping of primary colon
cancer tissue. Microarray 1 is commercially available (6.8k Human Chip;
Affymetrix, Santa Clara, CA) and covers 7,071 genes. Microarrays 2 and 3 are
custom designs, each covering 6,088 genes. The commercially available
microarray 1 represents the currently known set of functionally characterized
genes, which are all available in the public domain. The design of microarrays
2 and 3 will be described elsewhere (data not shown). In brief, microarray 2
consists of transcripts for which high-quality consensus sequences could be
generated from public and proprietary EST databases. “High quality” means
that the consensus is based on an EST sequence redundancy of at least five to
correct for the vast majority of EST sequencing errors. The minimum length
requirement of 500 nucleotides applied in this design is significantly exceed-
ed by most of the sequences. Microarray 3 contains 3¢ sequences with a mini-
mum of five contributing ESTs from public and proprietary sources. In addi-
tion, sequences were selected to exclude any significant sequence homology
between genes represented on the microarray set.

RNA was extracted from primary colon cancer and adjacent normal
human tissue using the Ultraspec method (Biotecx, Houston, TX). RNA was
converted into cDNA by reverse transcription and then into cRNA with an in
vitro transcription reaction that contained biotin-labeled CTP and UTP

nucleotides16. Hybridization of cRNA to the microarrays and quantification
of RNA expression was performed as described in ref. 16.
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